
The Risk-Centric Model of Software Architecture∗

George Fairbanks
Rhino Research

http://rhinoresearch.com

ABSTRACT
Developers are faced with a smorgasbord of architecture activities
but few models telling them which activities to use. Alternatives
include the documentation package model, which advocates a com-
plete architectural description from many perspectives, and the evo-
lutionary design model, which advocates no up-front architectural
work. This paper introduces the risk-centric model, inspired by
Attribute Driven Design (ADD) and the Spiral model. Risks are
central, so developers: (1) prioritize the risks they face, (2) choose
appropriate architecture techniques to mitigate those risks, and (3)
re-evaluate remaining risks. It encourages “just enough” architec-
ture by guiding developers to a prioritized subset of architecture
activities. Like ADD, and unlike the Spiral model, the risk-centric
model is not a full software development process and can instead
be used inside a process such as XP or RUP.

1. INTRODUCTION
Software engineering is a relatively new engineering discipline,

yet, over the past few decades, knowledge has built up about how
to reliably develop software and avoid pitfalls. In fact, so much
knowledge has built up that no project can possibly apply every
known software engineering technique, useful as those techniques
are. Consequently, various software development processes pro-
vide guidance to developers about choosing and applying tech-
niques.

A similar situation is beginning to occur in the sub-field of soft-
ware architecture. Our knowledge about software architecture has
been greatly enhanced over the past few years [5, 10, 9, 25, 22]
and this year a thorough textbook on the subject has been produced
[26]. As a result, developers have more architectural techniques
than they can economically apply on a project. Yet, unlike the
overall field of software development, developers have relatively
little guidance on how to choose and apply software architecture
techniques.

∗This paper contains excerpts from the forthcoming book, Risk-
Centric Software Architecutre by George Fairbanks, to appear
2010, published by Taylor and Francis, Alan Apt editor.

To understand the guidance that has been offered, it is helpful to
set up a strawman dichotomy. On the one hand we have developers
who are creation-centric and who justifiably revel in their uniquely
human ability to create. Their thoughts are only on how to create
the next bit of functionality. On the other hand of our strawman
dichotomy, we have the developers who have seen soaring hopes
crash down and who remind us that our creations all too often fail.
Their thoughts are only on how to safeguard against the next failure.

In this strawman dichotomy, the creation-centric developers would
evolve the architecture ad hoc and follow an evolutionary design
model [15, 6]. Evolutionary design does not suggest that archi-
tecture is unimportant, but rather advises that it is hard to get cor-
rect up-front. They also suggest that a squeaky clean codebase,
frequently refactored, is amenable to architectural rework. So the
right choice is to make architecture decisions as late as possible.

The cautious developers from the strawman would work out ar-
chitectures in advance and follow a documentation package model
[10]. Our systems will have challenging requirements, and our ar-
chitecture choices will make those requirements easier or harder
to achieve. We should find out in advance what those architecture
drivers are and create a full architecture description to avoid failure.

Each of us is a mixture of those two strawmen in the dichotomy.
Parts of us delight at what lines of code can create; other parts
worry how our creations will fail. Indeed, every developer under-
stands that failures must be avoided because failure avoidance is
central to any engineering discipline. Henry Petroski, a leading
historian of engineering, says about engineering as a whole:

The concept of failure is central to the design process,
and it is by thinking in terms of obviating failure that
successful designs are achieved. ... Although often
an implicit and tacit part of the methodology of de-
sign, failure considerations and proactive failure anal-
ysis are essential for achieving success. And it is pre-
cisely when such considerations and analyses are in-
correct or incomplete that design errors are introduced
and actual failures occur. [23]

Notice that Petroski describes solutions to design problems, not the
overall engineering process or how to obtain accurate requirements.
He says simply that to design something that works, you must con-
sider how it can go wrong and avoid those possibilities.

2. RISK-CENTRIC MODEL
So we are faced with a dilemma. We must balance our desire to

euphorically race forward and create with our need to assiduously
investigate and avoid failures. Developers want to succeed yet they
must economize time and money. Software architecture techniques
could help them succeed, but they are expensive.

Unquestionably, many development teams have struck a balance
on their own projects using their own criteria. What we need, how-
ever, is a repeatable and generic way to strike that balance. This
paper introduces the risk-centric model for choosing a subset of ar-
chitecture techniques that correspond to the risks facing the project.

2.1 What it is
The risk-centric model guides developers to apply a minimal set

of architecture techniques to reduce their most pressing risks. The
risk-centric model advises a relentless questioning process: “What
are my risks? What are the best techniques to reduce them? Is the
risk mitigated and can I start coding?”

The risk-centric model can be summarized in three steps:

1. Identify and prioritize risks

2. Select and apply a set of techniques

3. Evaluate risk reduction

It is similar to the spiral model of software development [7] in that
both focus on risk and work on the highest risk items first. How-
ever, the risk-centric model applies only to architecture, while the
spiral model applies to overall software development. The spiral
model is applied once to a project and ends when the software has
been completed. In contrast, the risk-centric model will be used at
the beginning of projects as well as time-to-time during the project.
It ends when architecture risks have been mitigated.

The risk-centric model also adapts an important feature from
Attribute Driven Design (ADD) [5]. ADD uses a mapping from
quality attributes to tactics to address them. For example, ADD
uses a mapping from the quality attribute “availability” to the tactic
“ping/echo”, which can be used to achieve availability. Similarly,
the risk-centric model uses a mapping from risks to architecture
techniques that address them. For example, it can use the mapping
from the risk “protocol may deadlock” to the technique “analyze
protocol using FSP”.

The key element of the risk-centric model is the promotion of
risk to prominence. What we choose to promote has an impact.
Most developers already think about risks, but they think about lots
of other things too. A recent paper described how a team that had
previously done up-front architecture work switched to a feature-
driven agile process and ended up deferring quality attribute con-
cerns — in fact they were deferred until active development ceased
and the system was in maintenance [4]. The conclusion to draw
is not that agile processes cannot handle quality attribute require-
ments, but that a team that has promoted features to prominence
will indeed pay less attention to other areas, including risks.

We do not want to waste time on low-impact techniques, nor
do we want to ignore project-threatening risks. We want to build
successful systems by taking a path that spends our time most ef-
fectively. That means only applying techniques when they are mo-
tivated by risks.

2.2 What it is not
Most developers believe that they already follow a risk-centric

model, or something close to it. However, in practice you see de-
velopers using techniques that are inefficient or ineffective at re-
ducing risks, or not using a technique that could help. Examining
the overall context of software development reveals why this can
occur. Most organizations guide developers to follow a process and
often provide some kind of documentation template. Developers
are guided to activities by the process or template, rather than be-
ing guided by risks particular to their project.

Each project will face a different set of risks. Consequently,
choosing the set of architecture techniques, or choosing a fixed
amount of time to spend on those techniques, will be inefficient.
It would be a great coincidence that the same set of diagrams or
techniques is always the best way to mitigate a changing set of
risks.

Another telltale sign that a project is not using a risk-centric
model is an inability to list the risks they confront and the corre-
sponding techniques they are applying. For a team using the risk-
centric model, this should be equally easy as listing features for a
team following a feature-driven model.

2.3 Enabling variation
Some projects will have tricky quality attribute requirements that

need up-front planned design, while other projects are tweaks to
existing systems and entail little risk of failure. Some development
teams are distributed and so they document their designs for others
to read, while other teams are co-located and can reduce this for-
mality. The takeaway point is that the risk-centric model advises
developers to use techniques corresponding to project risks, yet too
often one finds developers over- or under-applying techniques since
they are not explicitly evaluating risks.

The three steps to risk-centric software architecture are decep-
tively simple because the devil is in the details. What exactly are
risks and techniques? How do we choose an appropriate set of tech-
niques? And when do we stop architecting and start building? The
following sections will dig into these questions in more detail.

3. RISKS
Since both the probability of failure and the impact are uncertain,

we bundle the concept of uncertainty into our definition of risk,
rather than talking about perceived risks versus actual risks. Our
definition of risk then becomes:

risk = perceivedProbabililtyO f Failure× perceivedImpact

A result of this definition is that a risk can exist even if your sys-
tem is flawless. Imagine a concurrent program that, by chance, has
no race conditions. Since the developer does not know the program
is flawless, he should be concerned about the risk of concurrency
problems. Once the developer analyzes the program and discovers
that it is good, his perception of the risk goes down. So by applying
techniques we can reduce the amount of uncertainty, and therefore
the amount of risk.

3.1 Describing risks
You can state a risk categorically, for example “modifiability” or

“throughput”. But often this is too vague to be actionable: if we do
something, how can we tell if the risk is actually reduced? Another
way of saying this is that we must describe risks well enough so
that we can later test to see if it has been mitigated. A better way is
to describe each risk of failure as a testable failure scenario, such
as “The program de-references a null pointer, and crashes.”

3.2 Engineering and non-engineering risks
Software developers worry that their systems will fail: “I’m afraid

that the server will not scale to 100 users”, “Parsing of the response
messages may not be robust”, “It’s working now but if we touch
anything it may fall apart.” These are examples of engineering
risks, risks that are in the domain of the engineering of the sys-
tem. Engineering risks are risks related to the analysis, design, and
implementation of the product.

We contrast engineering risks with project management risks,
which relate to schedules, sequencing of work, delivery, team size,

Other enginering Software architecture
Stress calculations Apply design or architecture pattern
Breaking point test Domain modeling
Thermal analysis Throughput modeling
Reliability testing Security analysis
Prototyping Prototyping

Table 1: Examples of engineering risk reduction techniques in
software architecture and other fields

geography, etc. Examples of these include: “Lead developer hit by
bus”, “Customer needs not understood”, or “Senior VP hates our
manager”.

The technique type must match the risk type. We separate engi-
neering risks from other risks because only engineering techniques
will mitigate engineering risks. You cannot use a PERT chart to
reduce the chance of buffer overruns, nor will UML resolve stake-
holder disagreements.

3.3 Identifying risks
Experienced developers have an easy time identifying risks but

what can be done if we are less experienced or working in an unfa-
miliar domain? The easiest place to start is with the requirements,
whatever form they take, and look for things that seem difficult
to achieve. Stakeholders often fail to clearly articulate quality at-
tribute requirements, so we can elicit them formally or informally
to find challenging ones.

Each domain has a set of prototypical risks that is different from
other domains. For example, Systems projects usually worry more
about performance than IT projects. Individual organizations may
have created checklists describing historical problem areas, perhaps
generated from architecture reviews. These checklists are valuable
knowledge for less experienced developers and a helpful reminder
for experienced ones.

4. TECHNIQUES
Once we know what risks we are facing, we can apply techniques

that we expect to reduce the risk. The term technique is quite broad,
so we will focus specifically on software architecture risk reduction
techniques, but for convenience continue to use the simple name
technique. Table 1 shows a short list of software engineering tech-
niques and techniques from other engineering branches.

4.1 Analyses and solutions
Imagine you are building a cathedral and you are worried that it

may fall down. You could build models of various design alterna-
tives and calculate their stresses and strains. Alternately, you could
apply a known solution, such as using a flying buttress. Both work,
but one approach has an analytical character while the other has a
known-good solution character.

Techniques exist on a spectrum from pure analyses, like calcu-
lating stresses, to pure solutions, like using a flying buttress on a
cathedral. Other software architecture and design books have in-
ventoried techniques on the solution-end of the spectrum, and call
these techniques tactics [5] or patterns [24, 16], and include such
solutions as using a process monitor, a forwarder-receiver, or a
model-view-controller.

4.2 Techniques mitigate risks
Design is a mysterious process, where virtuosos can make leaps

of reasoning between problems and solutions [25]. To make a re-
peatable process, however, we need to make explicit what the virtu-

osos are doing tacitly. In this case, we need to make explicit how to
choose techniques in response to risks. Right now this knowledge
is mostly informal, but we can aspire to creating a handbook that
would help us make informed decisions. It would be filled with en-
tries that look like this: If you have <a risk>, techniques that could
reduce it include <techniques>.

A technique is good at reducing some risks but not others. In
a neat and orderly world, there would be a single technique to ad-
dress every known risk. In practice, some risks can be mitigated
by multiple techniques, while others require developers to invent
techniques on the fly. We can improve the repeatability of design-
ing software architectures by encoding the knowledge of virtuoso
architects as mappings between risks and techniques.

4.3 Cannot eliminate engineering risk
Imagine a software developer whose only concern is to minimize

engineering risks. He would rationally choose to apply every ap-
plicable technique to minimize those engineering risks to build the
best possible system. If the Wright brothers had minimized engi-
neering risks, their first test flight might have been in 1953 instead
of 1903.

The reason we cannot eliminate engineering risks is because we
must balance them with non-engineering risks, which are predom-
inantly project management risks. Consequently, a software de-
veloper does not have the option to apply every useful technique
because the time and cost to do so must be balanced against the
reduction in risk.

4.4 Optimal basket of techniques
To avoid wasting our time and money, we must choose tech-

niques that best reduce our prioritized list of risks. We should seek
out opportunities to kill two birds with one stone by applying a sin-
gle technique to mitigate two or more risks, or even think of it as
a knapsack problem to choose a set of techniques that optimally
mitigates your risks.

It is harder to decide which techniques should be applied than it
appears at first glance. Every technique does something valuable,
just not the valuable thing your project needs. Imagine you success-
fully used the technique of domain modeling on your last project,
so you choose it for this project. You find three flaws in your de-
sign, and fix them. You might become convinced that employing
that technique was a good idea, because you otherwise would not
have found the three flaws. But such reasoning ignores the oppor-
tunity cost. The fair comparison is against the other techniques you
could have used. If your biggest risk is that your chosen framework
is inappropriate, you should spend your time analyzing the frame-
work choice instead of domain modeling. Your time is scarce, so
you should choose techniques that are maximally effective at re-
ducing your failure risks, not just somewhat effective.

Put another way, if you hear that a project is applying a set of
techniques, then it is impossible to know that the project has chosen
wisely unless you also know what risks it faces.

5. WHEN TO STOP
An important question in software architecture, and one that we

still do not have a good answer for is, “How much architecture is
enough?” or simply, "When do we stop?" Time spent modeling or
analyzing is time that could have been spent building, so we want
to get the balance right. Ideally, we would have an objective, quan-
titative decision procedure, but we will settle for a well understood
qualitative one.

Like other engineering fields, software engineering should focus
on mitigating risks. We now know how to identify risks and have

techniques ready to combat many of them. We are tempted work
until all engineering risks have been eliminated, but the time spent
on that must be balanced with other, non-engineering risks, such as
pleasing the customer and delivering products.

When deciding how much architecture to do, our guiding princi-
ple is: Architecture efforts should be commensurate with the risk of
failure. If you are not worried about security failure scenarios, do
not do any security design. However, if performance is an archi-
tecture driver, work on it until you are reasonably sure that perfor-
mance will be OK, or until the risk of not delivering the project on
time overshadows it. This does not mean that every detail has been
decided, but rather that the architecture will support or enable you
to achieve the architecture drivers. After that, you can shift gears
and let design occur locally or use evolutionary design (discussed
in Section ??) to tweak the architecture.

After we have applied our chosen techniques, we must decide
if the risk has been sufficiently mitigated, or if we need to con-
tinue our architecture and design activities. Where do we draw the
line? This is primarily a subjective decision based on a developer’s
conviction that the current architecture or design will support the
architecture drivers, but we do have some yardsticks to guide us.

5.1 Yardsticks
We have empirical data that suggests how much time should

be spent on architecture and design. Barry Boehm has calculated
the optimal amount of architecture for small, medium, and large
projects based on a variant of his COCOMO model [8]. His data
indicates that the largest projects should spend more time on archi-
tecture, as much as a third of the total time.

A yardstick like “spend 20% of your time on design” can be used
for rough planning of activities, yielding a time budget to spend in
design. However, no reasonable developer should continue design
activities for additional days after the risks have been worked out,
even if the yardstick provides that budget. Nor should a reasonable
developer just start coding when a major failure risk is outstanding.
It is best to view such yardsticks as heuristics derived from experi-
ence combating risks, where projects of a certain size historically
needed about that much time to mitigate their risks.

When you are in the trenches, though, you do not use that yard-
stick to measure your progress, but instead measure it by how well
your design activities have mitigated your identified risks. Using
risk to help decide when to stop is therefore an improvement over
simple yardsticks. And, unlike yardsticks that only provide cate-
gorical time budgets, it guides us to appropriate kinds of architec-
ture and design activities.

5.2 Subjectivity
Unfortunately, the risk-centric model is riddled with subjectivity:

risk identification, variation in priority, choice of techniques, and
evaluation of risk mitigation will all vary depending on the who
does them. Experienced developers will likely perform better than
novices.

Despite the subjectivity, we are way ahead because a risk-centric
approach yields arguments that can be evaluated. An example argu-
ment would take the form: we identified A, B, and C as the biggest
risks, with B being an architecture driver, so we spent time applying
a techniques X and Y, evaluated the resulting design, and decided
the risk of B was sufficiently low, so prototyping or development
could continue. For any of the subjective points, another developer
could provide a differing evaluation, perhaps suggesting that risk D
be included, and a rational discussion would ensue.

It is hard to imagine an approach that could eliminate subjec-
tivity, for example one that could say definitively that a project

contained no performance risks, or definitively that a security risk
had been eliminated. Instead, the broad question of "How much
software architecture should we do?" has been transformed into a
narrow one, "Have our chosen techniques sufficiently reduced our
failure risks?"

6. STYLES OF DESIGN
Software architecture takes place in a larger design context that

includes design styles and software development processes. This
section discusses three styles of design — evolutionary, planned,
and minimal planned — and the next section discusses software
development processes.

6.1 Evolutionary design
Evolutionary design “means that the design of the system grows

as the system is implemented” [15]. Chaos usually results because
all design decisions are made locally and without coordination, cre-
ating a hodgepodge system that is hard to maintain and evolve any
further.

Recent trends in software processes have re-invigorated evolu-
tionary design by avoiding most of its shortcomings. The agile
practices of refactoring, test-driven design, and continuous integra-
tion work against the chaos. Continuous integration provides the
entire team with the same codebase, test-driven design ensures that
changes to the system do not cause it to lose or break existing func-
tionality, and refactoring (a behavior-preserving transformation of
code [14]) cleans up the uncoordinated local designs. Some argue
that these practices are sufficiently powerful that planned design
can be avoided entirely [6].

Of the three practices, refactoring is the workhorse that enables
evolutionary design. Refactoring replaces designs that solved older,
local problems with designs that solve current, global problems.
Refactoring, however, has limits. While theoretically possible, the
current refactoring techniques have a difficult time with architec-
ture scale transformations. For example, Amazon’s evolution from
a tiered architecture to a service-oriented architecture [17] is diffi-
cult to imagine resulting from small refactoring steps. In addition,
legacy code usually lacks sufficient test cases to confidently engage
in refactoring, yet most systems have some legacy code.

It is worth remembering that every advocate of evolutionary de-
sign says it is a bad idea unless it is paired with supporting practices
like refactoring, test-driven design, and continuous integration.

6.2 Planned design
At the opposite end of the spectrum from evolutionary design is

planned design. The general idea behind planned design is that
plans are worked out in great detail before construction begins.
However, almost no one advocates doing planned design for the
entire system, sometimes called Big Design Up Front (BDUF), ex-
cept for Model Driven Engineering (MDE) folks who generate code
from their models. However, planning just the architecture is advo-
cated [18, 5], since it is often hard to know on a large or complex
project that any system can satisfy the requirements.

Planned architecture design is also helpful when a shared, central
architecture is shared by many sub-teams working in parallel, and
therefore useful to know from the beginning. In this case, a planned
architecture that defines the top-level components and connectors
can be paired with local designs, where sub-teams design the in-
ternal models of the components and connectors. The architecture
usually decides on some properties that must hold, such as setting
up a concurrency policy, allocating high-level responsibilities, and
defining some localized quality attribute scenarios.

6.3 Minimal planned design
In between evolutionary design and planned design is minimal

planned design, or Little Design Up Front [20]. Advocates of min-
imal planned design worry that they might design themselves into
a corner if they did all evolutionary design, but they also worry that
all planned design is difficult and likely to get things wrong. Martin
Fowler puts nominal numbers on this, saying he does 20% planned
design and 80% evolutionary design [27].

One way to strike the balance between the two kinds of design is
to ensure that the architecture will support its architecture drivers
during some initial planned design. After this initial planned de-
sign, future changes to requirements can often be handled through
local design, or with evolutionary design if the project also has
refactoring, test-driven-design, and continuous integration practices
working smoothly.

In special cases we have better guidance on how to balance planned
and evolutionary design. When we are concerned primarily with
how well the architecture will support global or emergent qualities,
we can do planned design to ensure these and reserve any remain-
ing design as evolutionary or local design. For example, if we have
identified throughput as our architecture driver, we could engage
in planned design to set up throughput budgets (e.g., message de-
liveries happen in 25ms 90% of the time). The remainder of the
design, which ensured that individual components and connectors
met those performance budgets, could be done as evolutionary or
local design. The general idea is to perform architecture-centric
design [12] to set up an architecture known to achieve our architec-
ture drivers, allowing freedom in the rest of design.

6.4 Using the risk-centric model
An architecture or design should rarely, if ever, be 100% com-

plete before proceeding to prototyping or coding. It is nearly im-
possible to get the design perfect without getting feedback from
running code. If we have high confidence in our ability to do evolu-
tionary design, we will do less planned design, and vice versa. The
current thinking on this has religious divides and the debate centers
around anecdotes rather than adequate data, so for now opinions
will vary.

While there are clear differences, planned design and evolution-
ary design are both kinds of design. Developers must design soft-
ware before they write the code, whether it is ten minutes before
or ten months before. The essential tension is this: a long head-
start on architectural design yields opportunities to avoid design
dead-ends, ensure global properties, and coordinate sub-teams at
the expense of possibly making mistakes that would be avoided if
they were made later. Teams with strong refactoring, test-driven
development, and continuous integration practices will be able to
do more evolutionary design than other teams.

The risk-centric model is compatible with evolutionary, planned,
and minimal planned design. Each of these design styles says that
design should happen but leaves open how it should proceed. Ap-
plying the risk-centric model to planned design means doing up-
front design until architecture risks have subsided. Applying it to
evolutionary design means doing architecture design ad hoc during
development, whenever a risk looms sufficiently large. Applying it
to minimal planned design is just a combination of the two.

7. SKETCH: ADDING RISK TO AGILE PRO-
CESSES

Since agile projects vary in their process, let’s assume one with
a two-week iteration that plays a planning game to manage the
feature backlog. On the engineering side, we have software ar-

��������
�	
�� ��
����

������
�
�����

����	
��
��
� ������

���
����
�����

�����
�������

Figure 1: One way to incorporate risk into an agile process is to
convert the feature backlog into a feature & risk backlog. The
product owner adds features and the software team adds tech-
nical risks. The software team must help the product owner to
understand the technical risks and suitably prioritize the back-
log.

chitecture risks that we need to fold into this process, which in-
cludes identification, prioritization, mitigation, and evaluation of
those risks. The big challenges are: how to address initial engineer-
ing risks, and how to incorporate engineering risks as they come up
into the stack of work to do.

You will have identified some risks at the beginning of the project,
such as the initial choices for architectural style, choice of frame-
works, and choice of other COTS components. Some agile projects
use an iteration zero to get their development environment set up,
including source code control and automated build tools. We can
piggyback here to start mitigating the identified risks. Developers
could have a simple whiteboard meeting to ensure everyone agrees
on an architectural style, or come up with a short list of styles to
investigate. If performance characteristics of COTS components
are unknown but important, some quick prototyping can be done to
provide approximate speed or throughput numbers.

At the end of iteration zero, you need to evaluate how well your
activities mitigated your risks. Most of the time you will have re-
duced the risk sufficiently that it drops off your radar, but some-
times not. Imagine that at the end of the iteration you have learned
that prototyping shows that your preferred database will run too
slowly. This is the beginning of a risk backlog. This risk must be
written up as a testable feature for the system and added to the back-
log. Note that this is not an excuse to turn a nominal iteration zero
into a de facto big design up-front exercise. Instead of extending
the time of iteration zero, risks are pushed onto the backlog.

It is challenging to fold engineering risk into a planning game to
manage a backlog of features. Many agile projects divide the world
into product owners, who create a prioritized list of features called
the backlog, and developers, who take features from the top of the
backlog and build them. The world becomes more complex once
we introduce risks, because we need to prioritize both features and
risks. Some risks are small enough that they can be handled as they
arise during an iteration, but larger risks will need to be scheduled
just like features are. Whenever possible, risks should be written
up as testable features.

If we give the product owner the additional responsibility to pri-
oritize architectural risks alongside features, we can simply change
the feature backlog into a feature & risk backlog, as seen in Figure
1. Software developers may see a feature low in the backlog ask-
ing for security. It is their job to educate the product owners that
if they ever want to have a secure application, they need to address
that risk early, since it will be difficult or impossible to add later.
As part of the reflection at the end of each iteration, we need to
evaluate architectural risks and feed these into the backlog.

In summary, we can handle architectural risks in an agile process

by doing two things. Architectural risks that we know in advance
can be handled in a timeboxed iteration zero, where no features are
planned to be delivered. Small architectural risks can be handled
as they arise during iterations, but large architectural risks must be
promoted to be on par with features, and inserted into a combined
feature & risk backlog.

8. CONCLUSION
In this paper, we set out to understand how focusing on risks

could help us to efficiently use software architecture. We wanted to
walk a middle path that avoided the extremes of complete architec-
ture documentation packages and total architecture avoidance. To
compromise, we followed the principle that our architecture efforts
should be commensurate with the risk of failure. Avoiding failure
is central to all engineering and we can use architecture techniques
to mitigate the risks we identify. The key element of risk-centric
model is the promotion of risk to prominence. Each project will
have a different set of risks, so it likely needs a different set of
techniques. To avoid wasting our time and money, we must choose
techniques that best reduce our prioritized list of risks.

The question of how much software architecture work we should
do has been a thorny one for a long time. The risk-centric model
transforms that broad question into a narrow one, "Have our cho-
sen techniques sufficiently reduced our failure risks?" Evaluation
of risk mitigation is still subjective, but it is one that developers can
have a focused conversation about.

Engineering techniques address engineering risks, but projects
face a wide variety of risks. Software development processes must
prioritize both management risks and engineering risks. We cannot
reduce engineering risks to zero because there are also project man-
agement risks to consider, including time-to-market pressure. By
applying risk-centric software architecture, we ensure that what-
ever time we devote to software architecture reduces highest prior-
ity engineering risks and applies relevant techniques.

Agile architecture approaches often emphasize evolutionary de-
sign over planned design. Another middle path, minimal planned
design, can be used to avoid the extremes. The essential tension
is this: a long headstart on architectural design yields opportunities
to avoid design dead-ends, ensure global properties, and coordinate
sub-teams at the expense of possibly making mistakes that would
be avoided if they were made later. Agile processes focusing on
features can be adapted slightly to add risk to the feature backlog,
with developers educating product owners on how to prioritize the
feature & risk backlog.

9. RELATED WORK
The invention of risk as a concept likely occurred quite early,

with references to it in Greek antiquity, but it took on its modern,
more general, idea as late as the 17th century, where it increasingly
displaced the concept of fortunes as what drove life’s outcomes
[19].

The idea of focusing on risk is not a new one, either in engi-
neering as a whole or in software engineering specifically. Barry
Boehm wrote about risk in the context of software development
with his paper on the spiral model of software development [7],
which is an interesting read even if you already understand the
model. He followed this up with a recent book on risk and ag-
ile processes [8]. The summary of his judgment is, “The essence
of using risk to balance agility and discipline is to apply one sim-
ple question to nearly every facet of process within a project: Is
it riskier for me to apply (more of) this process component or to
refrain from applying it?”

Authors have been advocating building minimally sufficient mod-
els for years, including Desmond D’Souza [11] and Scott Ambler
[3]. Tailoring the models built on a project to the nature of the
project (greenfield, brownfield, coordination, enhancement) is dis-
cussed in [13].

The idea of cataloging techniques, or tactics, is described in the
context of Attribute Driven Design in [5]. They develop a table
of tactics that are mapped to quality attributes they help achieve.
The concept in this book of mapping development techniques is
similar in nature. The risk-centric model can be seen as taking the
promotion of risk from the spiral model and adapting the tabular
mapping of ADD to map risks to techniques.

Though tactics and techniques have so far been expressed as ta-
bles, they could be expressed as a pattern language, as originally
described by Christopher Alexander for the domain of buildings
[2, 1], and later adapted to software in the Design Patterns book
[16] by Erich Gamma and others.

Knowing what tactics or techniques to apply would be valu-
able knowledge to include in a software architecture handbook, and
would accelerate the learning of novice developers. Such knowl-
edge is already in the heads of virtuosos, as described by Mary
Shaw and David Garlan [25]. The better our field encodes this
knowledge, the more compact it becomes and the faster the next
generation of developers absorbs it and sees farther.

Martin Fowler’s essay, “Is Design Dead?” [15] provides a very
readable introduction to evolutionary design and the agile practices
that are required to make it work.

Merging risk-based software development and agile processes is
an open research area. Jaana Nyfjord’s thesis [21] proposes the cre-
ation of a Risk Management Forum to prioritize risk across prod-
ucts and projects in an organization. Since our goal here is to handle
architecture risks that are only a subset of all project risks, a smaller
change to the process may work.

10. REFERENCES
[1] C. Alexander. A Pattern Language: Towns, Buildings,

Construction (Center for Environmental Structure Series).
Oxford University Press, USA, 1977.

[2] C. Alexander. The Timeless Way of Building. Oxford
University Press, 1979.

[3] S. Ambler. Agile Modeling: Effective Practices for Extreme
Programming and the Unified Process. Wiley, 1st edition, 3
2002.

[4] M. A. Babar. An exploratory study of architectural practices
and challenges in using agile software development
approaches. Joint Working IEEE/IFIP Conference on
Software Architecture 2009 & European Conference on
Software Architecture 2009, 2009.

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, second edition edition, 2003.

[6] K. Beck and C. Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley
Professional, 2 edition, 11 2004.

[7] B. Boehm. A spiral model of software development and
enhancement. IEEE Computer, 21(5):61–72, 1988.

[8] B. Boehm and R. Turner. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley Professional, 1
edition, 8 2003.

[9] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach (ACM
Press). Addison-Wesley Professional, 5 2000.

[10] P. Clements, F. Bachmann, L. Bass, D. Garlan, JamesIvers,

R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2002.

[11] D. F. D’Souza and A. C. Wills. Objects,Components and
Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1998.

[12] G. Fairbanks. Risk-Centric Software Architecture. Taylor and
Francis, To appear 2010.

[13] G. Fairbanks, K. Bierhoff, and D. D’Souza. Software
architecture at a large financial firm. Proceedings of ACM
SIGPLAN Conference on Object Oriented Programs,
Systems, Languages, and Applications (OOPSLA) 2006,
2006.

[14] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1 edition, 7 1999.

[15] M. Fowler. Is design dead? 2004.
http://martinfowler.com/articles/designDead.html.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software
(Addison-WesleyProfessional Computing Series).
Addison-Wesley Professional, 1995.

[17] T. Hoff. Amazon architcture, 2008.
http://highscalability.com/amazon-architecture.

[18] A. J. Lattanze. Architecting Software Intensive Systems: A
Practitioners Guide. Auerbach Publications, 1 edition, 11
2008.

[19] N. Luhmann. Modern society shocked by its risks. Social
Sciences Research Centre: Occasional Papers, 1996.

[20] R. Martin. The scatology of agile architecture, April 2009.
http://blog.objectmentor.com/articles/2009/04/25/the-
scatology-of-agile-architecture.

[21] J. Nyfjord. Towards Integrating Agile Development and Risk
Management. PhD thesis, Stockholm University, 2008.

[22] D. E. Perry and A. L. Wolf. Foundation for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[23] H. Petroski. Design Paradigms: Case Histories of Error and
Judgment in Engineering. Cambridge University Press, 5
1994.

[24] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture Volume 2: Patterns
for Concurrent and Networked Objects. Wiley, 1 edition, 9
2000.

[25] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[26] R. Taylor, N. Medvidović, and E. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 11
2008.

[27] B. Venners. A conversation with martin fowler, part iii.
Artima Developer, 2002.
http://www.artima.com/intv/evolutionP.html.

	Introduction
	Risk-centric model
	What it is
	What it is not
	Enabling variation

	Risks
	Describing risks
	Engineering and non-engineering risks
	Identifying risks

	Techniques
	Analyses and solutions
	Techniques mitigate risks
	Cannot eliminate engineering risk
	Optimal basket of techniques

	When to stop
	Yardsticks
	Subjectivity

	Styles of design
	Evolutionary design
	Planned design
	Minimal planned design
	Using the risk-centric model

	Sketch: Adding risk to agile processes
	Conclusion
	Related work
	References

