

2 CrossTalk—Nov/Dec 2010

CONTENTs

CrossTalk
OSD (AT&L) stephen P. Welby
NAVAIR Jeff schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Brent Baxter
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the Office of the Secretary of Defense (OSD)
Acquisition, Technology and Logistics (AT&L); U.S. Navy (USN); U.S.
Air Force (USAF); and the U.S. Department of Homeland Security
(DHS). OSD (AT&L) co-sponsor: Software Engineering and System
Assurance. USN co-sponsor: Naval Air Systems Command. USAF co-
sponsor: Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber-
security Division in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and
coordinated with CrossTalk.

Trademarks and Endorsements: This Department of Defense
(DoD) journal is an authorized publication for members of the DoD.
Contents of CrossTalk are not necessarily the official views of, or
endorsed by, the U.S. government, the DoD, the co-sponsors, or the
STSC. All product names referenced in this issue are trademarks of
their companies.

CrossTalk Online Services:
See <www.crosstalkonline.org>, call (801) 777-0857
or e-mail<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Interview with Grady Booch
Software engineering legend Grady Booch shares his thoughts on
open-source principles, systems engineering, and the evolution
of UML.

Just Enough Architecture: The Risk-Driven Model
The Risk-Driven Model avoids the extremes of complete architecture
documentation vs. complete architecture avoidance by encouraging
developers to prioritize risks then choose appropriate architecture
techniques to mitigate those risks.
by George Fairbanks

Enabling Agility Through Architecture
Amongst all the enthusiasm for using Agile practices, the critical role
of the underlying architecture is often overlooked. Enhancement Agil-
ity is only possible when coupled with Architectural Agility.
by Nanette Brown, Robert Nord, and Ipek Ozkaya

The Chief Software Architect in U.S. Army Acquisition
The Army is focused on developing the software architecture skills
of its acquisition workforce and building awareness of architecture-
centric practices among its leadership.
by Stephen Blanchette, Jr. and John Bergey

XDDS: A Scalable Guard-Agnostic Cross Domain
Discovery Service
The XDDS prototype demonstrated in this project enables a neces-
sary but previously unavailable capability helping to address a number
of challenges grounded in the inherent mismatch between core
SOA principles.
by Michael Atighetchi, Joe Loyall, Jonathan Webb,
and Michael J. Mayhew

Service Incentive: Towards an SOA-Friendly
Acquisition Process
As SOA evolves within the DoD, acquisition culture needs to shift to
enable collaborative behavior that will provide solution synergy. The
DoD will benefit by getting the most value out of services contracted
for particular programs.
by James T. Hennig and Arlene F. Minkiewicz

Global Workforce Development Projects in
Software Engineering
The development of a high-performance systems and software
engineering workforce in a world of increasing complexity requires a
foundation of authoritative knowledge and guidance in systems
and software.
by Art Pyster, Mark Ardis, Dennis Frailey, David Olwell,
and Alice Squires

 3 Publisher’s Note

 42 BackTalk

8
4

12

18

24

32

36

Architecture Today

Departments

Cover Design by Kent Bingham

CrossTalk—Nov/Dec 2010 3

I find it comforting to know
that some structure exists
in a world of increasing
confusion, fragmentation,
and uncertainty. Amongst
the crashing economies,
warring nations, and
natural disasters, we find
software architectures
quietly, resolutely, even
purposefully adding stabil-
ity to our software world
which can be chaotic itself

at times. While I may be waxing a little too poetic about soft-
ware architecture in the face of larger calamities, you have to
admit, there is certain serenity and solace in the construction
and formation of peacefully co-existing relationships between
systems. Call me a geek, but I get excited thinking about a
well designed architecture which provides strength, security,
foundation, functionality, and communication for the system
users. Think of a world where an engineered substructure is
designed and tested for all future users prior to adding addi-
tional systems and functions. Governments of the world take
note; architecture adds to strength, durability, and potency
when performed thoughtfully.

So where is Architecture Today? Grady Booch answers
this question as he shares his thoughts on the subject while
reflecting on the power of open-source principles and systems
engineering as the keys to success in CrossTalk’s lively and
entertaining “Interview with Grady Booch.” Grady also discusses
the evolution of UML, the constraints of the DoD software world,
the stagnation of languages, and the benefits of interdisciplinary
training of our teams.

CrossTalk also offers a healthy line-up of informative
articles exploring architectural topics such as how risk-driven
models can guide architecture developers by mitigating risks
using design techniques in the article “Just Enough Architec-
ture: The Risk-Driven Model," and how acquisition and ar-
chitecture can all altruistically co-exist in the article “Service

PUBLIsHER’s NOTE

Incentive: Towards an SOA Friendly Acquisition Process.”
See the practices used by the U.S. Army to promote archi-
tectural practices while increasing acquisition workforce
talent by establishing Chief Software Architects in the article
“The Chief Software Architect in U.S. Army Acquisition" and
the intelligence community’s efforts to advance architectural
practices while satisfying tough requirements in “XDDS: A
Scalable Guard-agnostic Cross Domain Discovery Service.”
Two final articles titled “Enabling Agility through Architec-
ture" and “Agile Integration of Complex Systems" explore
the practice of maintaining flexibility and innovation while
implementing sound architectures.

“Global Workforce Development Projects in Software
Engineering” is our final article which further explores the soft-
ware engineering education concerns identified earlier in this
issue by Grady Booch. The authors share information on two
current software community projects: Integrated Software and
Systems Engineering Curriculum and The Body of Knowl-
edge and Curriculum to Advance Systems Engineering, both
of which are aimed at garnering an agreement on how to edu-
cate, guide, and certify the systems and software engineering
workforce. The community includes DoD, INCOSE, IEEE Sys-
tems Council, IEEE Computer Society Educational Activities
Board, and the Association for Computing Machinery. Anyone
related to this community should not miss this update.

The authors of this issue have provided me additional
fodder to go on waxing poetic in regard to our theme. Again,
call me a geek, but there is certainly something to be said for
taking the time to contemplatively reach out to stakeholders
and design a masterful architecture today.

Architecture Today

CrossTalk would like to thank the
309 sMXG for sponsoring this issue.

Kasey Thompson
Publisher

4 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

CrossTalk: Who are your most significant influences
both inside and outside of software?

Well, I’ve got quite a few, so I’m sort of going to give this to
you in a historical perspective.

U.S. Navy Rear Admiral Grace Murray Hopper, a fascinat-
ing woman I met some years ago, I still have my nanoseconds
from her1—and readers who know about that will smile gently.
In her lectures, she had this wonderful visual cue she used
when telling people about the amazing things in regards
to the shrinking of machines. She would have, prior to the
lecture, taken telephone wire and cut it into little 11-inch seg-
ments and passed it out to people, saying, “Here’s a nano-
second.” It actually represented the distance that light would
travel within a nanosecond—an amazing visualization. I was
always touched by her grace, her ability to speak power to
truth, and her ability to integrate the technical with the social.

Fred Brooks, of course, has been a tremendous influence
to me. Ed Yourdon and Tom DeMarco on the process side,
and more recently, folks like Kent Beck, Ward Cunningham
and Scott Ambler. I also add to this list Mary Shaw at Carn-
egie Mellon—she has taught me a great deal about architec-
ture, Philippe Kruchten did as well. The late Randy Pausch;2
I had the delightful opportunity to meet with him briefly at
a conference while he was presenting Alice.3 And George
Walther, who was my instructor at the Air Force Academy. He
was the first person who really introduced me to the notion of
discovering beauty in software.

Of course Jim and Ivar were tremendous influences on
me—we could not have produced the UML without the col-
laboration from all three of us. We are three radically different
personalities and, as I have said publicly, it’s amazing that we
accomplished what we did without felonies being committed
along the way. But I’m delighted that we did, and I honor and
respect them and dearly love the time I spent with them. It
was a high point in my career.

Outside the software world, Richard Feynman is my abso-
lute hero. His ability to just be a renaissance man, his interest
in so many wide-ranging fields, his desire to follow his bliss …
he is a role model for me.

CrossTalk: You have written numerous books in
your career. Which one do you believe has had the most
influence on the DoD software community?

Which one do I think has the most effect? The next one I’m
writing. [LAUGHTER]

The next one is titled The Handbook of Software Architec-
ture.4 Again, it goes in my theme of architecture as an artifact
and the important role I believe in delivering complex systems.
My goal here is to basically document the architecture of 100
interesting systems and describe them. My intent is to capture
what we find to be the best practices in architectural patterns
that are out there. This is an effort that has been going on for
seven years—and I hope I will finish it within the next seven
years. It’s hard research, but I’m learning a lot of things, dis-
covering things, and inventing things along the way.

As for past work, probably Object-Oriented Analysis and
Design with Applications5 was the most significant one
because it sort of helped start the effort of unification of the
work Jim, Ivar, and I did. It was influential in terms of notation
as well as process, and, frankly, in making object-oriented
design a household name.

CrossTalk: What is the current impression of the future
of the UML—a language you helped create?

Well this is a very timely question because we [at IBM]
recently submitted to Object Management Group (OMG)
a response to their request for information about the next
generation of the UML.6 I’ll begin by saying where I think the
UML is, and where the trajectory is going.

First, as one of the original officers of the UML, I am flat-
tered, amazed, stunned, and staggered at the reach the UML
has had. It has shown up in places I never, ever anticipated
when Jim [Rumbaugh], Ivar [Jacobson], and I began the jour-
ney unifying our methods.

What delights me and absolutely tickles me is the realiza-
tion that the goals of the UML are still very valid today, and
UML 2.0 continues to help deliver in that regard. I see the
UML being used in places far beyond whatever I anticipated
and that is very exciting and very humbling.

Yet that being said, part of our recommendation back to
the OMG and the biggest thing I pushed is for a return to the
fundamental roots of the UML, which is really two-fold.

First, UML 2.0 is more complex than it needs to be, and I
would like to see the UML become simplified over time. And
that’s not a means of throwing things out and not being back-
ward compatible, it’s just a matter of refactoring the language
so that there is a common underlining core.

The other thing I would really like to see is return to the roots
of the language not being a visual programming language,
which has fueled a lot of the model-driven development work.
In some domains, it’s quite appropriate … but it’s a modeling

Interview with
Grady Booch

CrossTalk—Nov/Dec 2010 5

ARCHITECTURE TODAy

language … I would like to increase the use in the semantics
of the UML relative to things like reverse engineering and min-
ing and reasoning about things as they unfold over time.

One other thing—in terms of where the UML is headed—is
that I was blown away recently when I discovered an article
called “The Systems Biology Graphical Notation.”7 Apparently
it was inspired by the UML as an attempt to build a standard
for biologists for modeling things within their world—things like
mechanisms within cells and the like. So that’s an example of
where the UML has extended its reach far beyond whatever
I imagined. That’s pretty cool, and it also tells me that the
language does have staying power; it’s going to be around here
for a long, long time. We do need to simplify and refactor it.

CrossTalk: If you were in charge of DoD’s weapon sys-
tems software and infrastructure IT systems, what would
be your top initiatives?

It really used to be, decades ago, that the DoD was leading
the marketplace in the delivery of software-intensive systems.
The harsh reality is that the commercial sector is leading
best practices and really pushing the arc relative to software
engineering and software development. So, in that regard,
the DoD is behind the times. That is not to say that they are
not pushing the limits in some areas. The kind of complex-
ity we see in certain weapons systems far exceeds anything
one would see commercially, but ultimately, there are a lot of
things that the DoD can learn from the commercial world. As
I look across the spectrum of systems that are successful
and try to find the anti-patterns from those that are unsuc-
cessful, there are three that come to mind and appear to have
relevance for success—not necessarily in any order.

There’s the leveraging of open-source principles. I know
that the DoD has Forge.mil, which is evolving those many
ideas of SourceForge, and I very much encourage that notion
because there’s this opportunity for transparency, visibility of
software intensive systems—it has certainly added value in
the commercial space. So I would certainly encourage and
intensify the use of those open-source platforms.

The next initiative I would bring about would be the col-
laboration infrastructures. The reality is that the DoD builds
software-intensive systems with contractors who are spread
across the globe, potentially—and certainly the deployment of
these systems is across the globe as well. I’m not sure that the
DoD has invested enough. And it’s not just the classic Web 2.0
kinds of things like wikis and shared whiteboards and the like.
I would also do some exploration in virtual worlds, the kinds of
things IBM and myself are trying to push in that space.

The third thing—and I’ve had some strong initiatives in this—
is the whole area of architecture. What drives me to this con-
clusion is that as I look at the main complaints and pains that
virtually every organization has in delivering software-intensive
systems, there appears to be a common thread between the
architecture and the artifact. So I would go beyond DoDAF
[Department of Defense Architecture Framework]. I really like
the standard. I think it’s effective for what it’s intended to be
for—really trying to model the enterprise of the warfighter—
but, in my personal opinion, I am less confident that it’s appro-

priate for the architecture of the software-intensive systems.
So I would certainly begin some initiatives to push for the
notion of architecture as an artifact in terms of its representa-
tion and its governance of the social organizations around it.

CrossTalk: What is the next big approach to creating
software-based systems that is going to make a significant
difference?

In terms of the next big approach, I believe it is growth in
our understanding of systems engineering.

Traditionally you begin the design saying, “I’ve got these
pieces and let’s throw in a processor here and there, and then
you software guys go off and do your thing.” The problem is
you can’t, from a systems engineering perspective, treat soft-
ware as something you can put aside. Rather, it is an intrinsic,
essential, universal piece of the system. So I think the biggest
change we will see—or the biggest need—is the move toward
a recognition that systems engineering needs to incorporate
more and more of the practices we know into pure software
systems because, in the warfighter’s case, these are hard-
ware/software systems—and that means we have to ap-
proach them differently than we have in the past.

So how does that manifest itself in terms of actionable
things? The real news is that there is work to be done. IN-
COSE’s beginning to embrace these ideas in the emergences
of languages like SysML [the Systems Modeling Language] is
helping us move along in that direction. But we don’t know all
the answers, and we’re on a journey along the way—that’s why
I say it’s the next big thing we’ll have to worry about.

CrossTalk: What new advances and changes in
languages and software engineering are on the horizon?

The following is, again, my personal opinion—not that of
anybody living or dead or yet to be born, and I say this be-
cause it is a controversial one. I’ve said it publicly and usually
I get lots of nasty e-mails after I say it, but my observation is
that on the language side we’re really at a plateau.

While I tracked what was happening in the language
research space, I was really excited about what was going on
in aspect-oriented programming. But that seems to have died
out, in the sense that people were still dealing with prob-
lems in the weeds and it really hadn’t risen up to the level of
aspects at a higher level of abstraction. So on the language
side, I think we’re going to see a continuation in most of our
existing languages. Look at C++ and you’ll see that they have
fixed a number of things in the current standards and they’ve
really tried to extend it in some other areas as well—and these
are largely incremental, albeit, important changes.

Where I think the biggest changes will happen will be back
in the software engineering side. But before I attend to that,
let’s talk about what pushes us in that direction: What are the
forces that cause that change?

There’s the presence of legacy and how one addresses
that. We have a crushing burden of legacy upon us—and not
to put this in a negative light—but the reality is there is a sig-
nificant capital investment in legacy and that leads us to not

6 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

throw these things away, but rather trying to figure out how
to interoperate with them. SOA [service-oriented architecture]
certainly plays an important role helping them interoperate,
but then again legacy—the forces around that—are one issue.
Another thing that is pushing up is presence of multi-core.
The frequency-scaling wars are over, so we can only begin
to boost computational resources by boosting frequencies
certain ways. If you have an obviously decomposable parallel
problem, multi-core usually fits, but you have a less than obvi-
ous decomposition. It’s really nasty and hard. Another force I
think we’re driving up is the whole problem with security—and
then the biggest one, perhaps the most dominant to impact
us, is the issue of complexity. We are building systems of
crushing complexity, so we need some help in that regard.

Those things together I think are pushing us. With regards
to what is happening in the software engineering side, the
good news is I think we have a good picture for how high-
ceremony processes and agile processes work well together.
So there’s a lot of good information coming out of that world.
And, although I think it may be self-serving, I see short-term
growth towards the practices around architecture as an
artifact, and then the next thing on the horizon is less-so soft-
ware engineering and more-so systems engineering.

CrossTalk: What are the restraining parameters that
hold software engineering back from more breakthroughs?

First off, I don’t really believe in breakthroughs. The reality
of the progress of science, especially in software, is that
changes come from the confluence of many things, where
you might reach a tipping point that changes things. But
I’m more of one for evolution than revolution. Frankly, I even
consider object-oriented design to be an evolutionary thing as
opposed to a revolutionary thing.

I think I’ve actually talked about the true restraining factors
already: legacy, inoperability, multi-core security. And the last
is complexity. We are dealing with systems that far exceed the
intellectual capacity of any single human. We generally lack
the notations, processes and measurements to help us deal
with that complexity—so that’s what holds us back. It’s a wick-
edly hard problem.

CrossTalk: What are we to do with all the DoD systems
that were implemented in older object-oriented languages
like Ada, Modula, etc., as there are less and less engineers
skilled to enhance and maintain the code?

There are older object-oriented languages being used. In
fact, I’m engaged in a project that is still using Ada, and I’m
excited that they are because it is really well-proven language.

It is a problem, but not one the DoD has alone. I had been
working on a project with the IRS … a system that is central
to their tax processing has about 500,000 lines of assembly

language, a lot of which was written in the ’60s and it still ex-
ists there. I see systems written in COBOL; I’ve seen systems
written in PL/I. So this is a systemic problem that goes to the
heart of the issue of legacy of older systems that I mentioned.

I’ve actually written and discussed this very topic; what I call
the “Nine Things You Can Do with Old Software.”8 One thing
you can do is harvesting—which is basically taking these older
things and doing the reverse engineering of pieces of them to
extract the algorithms, the data structures, things like that, and
then rewriting them—but that is so very hard. Another—the most
effective thing that I have seen—is the notion of continuous
architectural transformation. It requires considerable process
discipline and it goes back to the heart of architecture and ar-
tifacts. Only a few organizations that I’ve seen have been really
successful. I hold up eBay as a classic example.

CrossTalk: That’s interesting. I didn’t know there was
that much old language out there still being utilized.

Oh yeah, there are gobs of languages. I did a quick calcula-
tion asking how many lines of codes do we produce in the
world on a yearly basis? It was a low number, but if you make
an estimate for the number of software professionals, the
number of people that actually code, the number of lines of
code per average per year, you end up with around 33 billion
lines of code new or modified or produced every year—and I
will be honest in saying that’s conservative and it’s probably
off by an order of magnitude. So if you integrate that over the
years, it means, at the very least, that we probably have over
a trillion lines of code out there—and much of that is still run-
ning in these old systems. So the presence of these legacy
systems is a reality—and it’s not just a problem the DoD has.

CrossTalk: What major changes would you like to see in
the DoD to forward software engineering success?

I think the major change is in education. I don’t mean to
be critical, but in many ways the DoD’s expertise has, frankly,
been outsourced to its contractors. It is not to say that is a
horrible, terrible thing, but a lot of the things that happened
in old warfighting systems came through intrinsic expertise
inside the DoD. I would strongly encourage the increase of
education of the DoD’s intrinsic forces with regards to deci-
sion engineering and software engineering—and draw back
into the DoD more of that intellectual property. Ultimately,
delivering for the warfighters is what the DoD is all about,
and that requires an intensely educated staff to make that
happen. How does one make that manifest? I think there is
work to be done in acquisition policy, in processes for delivery
in the use of things like DoDAF. I think the DoD itself can lead
and should lead this, and it needs to make this change in the
interspatial spaces of its training, in its service academies, and
in its colleges as well.

CrossTalk—Nov/Dec 2010 7

ARCHITECTURE TODAy

CrossTalk: Have you seen anything to suggest that the
DoD has gathered that same point of view and that it might be
starting to change its perspective and train people differently?

Walt J. Okon and I recently had a conversation on that very
topic. I did raise with him the notion of education. I was abso-
lutely ready to dance on the table when he told me that one of
his major initiatives, beyond 2.0 reaching closure, is that whole
issue of education. Beyond what he is doing, I don’t have a lot
of insight, but I am certainly encouraged by his efforts.

CrossTalk: Back to the idea of needed training prior to
getting ensconced in the industry: How do you see the cur-
rent state of software engineering in higher education, and
where do you think it needs to go?

I’ve had the delightful opportunity to engage with a lot of
different schools. I make a yearly jaunt around the universi-
ties—both in the U.S. and other places in the world—to give
lectures and the like. I’ve also had the chance to interact
with people both in the ACM [Association for Computing
Machinery] and in the IEEE on K-12 and undergraduate and
graduate degrees.

What is growing are the interdisciplinary kinds of things like
I’ve seen at CMU, and at USC through Barry Boehm, where
systems engineering is coming together and software is an
important piece of that.

There is this mental model I use that I speak of as “the laws
of software.” So if you imagine that we have a surplus of cog-
nitive resources—in other words, human intelligence or human
imagination is not a limited resource—we come up with these
visions and we have to turn that into “raw running naked”
code. The question for me is what separates us from vision,
to turn that into raw running naked code—and the answer is
there are these things in the laws of software.

You’ll see that things move from the computer science-y
things, which are very mathematically based and very funda-
mental, into the things that become more human-oriented—
elements like politics and ethics and moral issues. We think we
know how to build certain things … the question is should we?

What makes it most difficult to move from vision to execu-
tion is something that swirls around the problems of design
and the problems of organization. How do I best architect a
system? How do I best architect my organization to deliver
that system? As it turns out, there’s this wonderful, delicious
cusp of the technical and the social, and that’s where the
sweet spot for delivery is in education. How does one attend
to the fiercely technical problems, but at the same time be
cognitive of the social issues as well? I swear there are days
that I go into an organization where I’ll show up as über geek
and other days I have to show up as Dr. Phil, slapping faces
around, saying, “My God, what are you thinking?” So, in terms
of where I think things need to go—well, for people delivering
software-intensive systems, I think our education system has
to attend to that dance between the technical and the social.

CrossTalk: I was recently in a conversation where we
were trying to set up a degree program with a local universi-
ty for UAS [unmanned aerial systems] and the big argument
was hardcore engineers versus interdisciplinary people. I
take it you’re leaning toward interdisciplinary as a strength?

Well, I say it is very much a strength because if you look
at unmanned vehicles, this is a classic systems-engineering
problem. There are some wickedly technical problems to over-
come, but ultimately I’m delivering a system to be used by hu-
mans, to be used in the context of other complex warfighting
systems. These are not islands, so I would want to seek out
the best ideas from a variety of places. So yes, I can’t imagine
one considering this other than interdisciplinary activity.

Through the mixtures of putting smart people together in dif-
ferent domains, innovation comes about in unexpected ways.

The final thing I’d offer is, you know, that this is still an
exciting discipline. The global economy is in a funk, there’s no
doubt about it. I’ve been lecturing recently about the notion of
software abundance in the space of economic scarcity, and
I’m utterly convinced that the delivery of software-intensive
systems is still a major source of innovation and, therefore,
economic growth. So this is still an exciting place to be. I en-
courage people who are thinking about this field to recognize
that there are a lot of wickedly entertaining, exciting and deli-
cious problems to solve. We’re not done yet.

1. To learn more about Rear Admiral Hopper (1906-1992)—including her
 famed nanoseconds—visit <www.chips.navy.mil/links/grace_hopper/
 womn.htm>.
2. Pausch may be known best for his Last Lecture: “Really Achieving Your
 Childhood Dreams.”
3. Alice is a 3-D programming environment.
4. Currently, Booch maintains a blog, <www.handbookofsoftwarearchi
 tecture.com>, for The Handbook of Software Architecture, which
 serves as the repository for ongoing work in an effort that will eventually
 be published in print.
5. First published in 1991, Booch’s book is in its third edition (2007).
6. See < www.uml.org> to learn more about UML, the current status of
 UML 2.0, and the role of the OMG.
7. By Nicolas Le Novère, et al., in the 7 Aug. 2009 edition of Nature
 Biotechnology. The article is available at
 <www.nature.com/nbt/journal/v27/n8/full/nbt.1558.html#a1>.
8. See the Sept./Oct. 2008 edition of IEEE Software or listen to the podcast,
 “Nine Things You Can Do With Old Software,” at <www.computer.org/
 portal/web/computingnow/onarchitecture>.

So this is still an exciting place to be. I en-
courage people who are thinking about this
field to recognize that there are a lot of
wickedly entertaining, exciting and delicious
problems to solve. We’re not done yet.

NOTES

8 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

If you knew nothing about software development, you
might imagine that the best developers were the ones who
spent the most time writing code. Yet it has been clear for a
long time that judicious application of other activities—such
as analysis, design and testing—will result in better software.
However, at some point, doing more analysis, design or
testing becomes counterproductive since it steals time and
resources away from other, more productive activities.

Designing an appropriate software architecture is one of
those non-coding activities that can improve the quality of a
system, but if developers spend too much effort on it, they will
be stealing from other activities. Consequently, an important
question is raised: How much design and architecture should
developers do? Any realistic answer must balance design and
architecture effort against other activities.

This article introduces the Risk-Driven Model of archi-
tectural design. It guides developers to apply effort to their
software architecture commensurate with the risks faced by
their project. That is, low-risk and highly precedented systems
should skimp on architecture, while high-risk and novel sys-
tems should pay more attention to it.

This might seem like common sense, but it is not what
happens today on most projects. Most commonly, a project’s
software development process dictates both the amount of
effort and the specific architecture techniques. Unless this
process is tuned to risk, it results in too much or too little ef-
fort spent on architecture.

How Architecture is Done Today
There is active debate about how much architecture work

developers should do and several answers have been proposed:
>> No architectural design. Developers should just write
code. Design happens, but is coincident with coding, and hap-
pens at the keyboard rather than in advance.
>> Use a yardstick. For example, developers should spend
10% of their time on architecture and design, 40% coding,
20% integrating and 30% testing.
>> Build a documentation package. Developers should
employ a comprehensive set of design and documentation
techniques sufficient to produce a complete written design
document.

Any of these answers could be appropriate, but it depends
on the project. The problem with these answers is that they
do not help developers find a balance—they instead prescribe
that balance in advance. What developers need is a way to
decide which architecture techniques they should apply and
which they should skip.

The Risk-Driven Model
The Risk-Driven Model helps developers decide how much

architecture work to do. The essence of the Risk-Driven
Model is these three steps:

1) Identify and prioritize risks
2) Select and apply a set of architecture techniques
3) Evaluate risk reduction
It helps developers follow a middle path, one that avoids

wasting time on techniques that help their projects only a
little, but ensures that project-threatening risks are addressed
by appropriate techniques.

The key element of the Risk-Driven Model is the promotion
of risk to prominence. What you choose to promote has an
impact. Most developers already think about risks, but they
think about lots of other things too, and consequently risks
can be overlooked.

Projects face different risks, so they need different archi-
tecture techniques. Some projects will have tricky quality at-
tribute requirements that need up-front planned design, while
other projects need tweaks to existing systems and entail
little risk of failure. Some development teams are distributed,
so they document their designs for others to read, while other
teams are co-located and can write fewer documents.

Just Enough Architecture:

Abstract: Developers have access to more architectural design
techniques than they can afford to apply. The Risk-Driven Model
guides developers to do just enough architecture by identifying their
project’s most pressing risks and applying only architecture and
design techniques that mitigate them. The key element of the Risk-
Driven Model is the promotion of risk to prominence. It is possible to
apply the Risk-Driven Model to essentially any software development
process, such as waterfall or agile, while still keeping within its spirit.

The
Risk-Driven
Model
George Fairbanks
Rhino Research

CrossTalk—Nov/Dec 2010 9

ARCHITECTURE TODAy

Technique Choices Should Vary
Most organizations guide developers to follow a process

with some kind of documentation template or a list of design
activities. Templates can be beneficial and effective, but they
can also inadvertently steer developers astray. Here are some
examples of well-intentioned rules that guide developers to
activities that may be mismatched with their project’s risks:
>> The team must always (or never) build a full documenta-
tion package for each system.
>> The team must always (or never) build a class diagram, a
layer diagram, etc.
>> The team must spend 10% (or 0%) of the project time on
design or architecture.

It would be a great coincidence if an unchanging set of
diagrams or techniques was always the best way to mitigate
a changing set of risks. Standard processes or templates
can be helpful, but they are often used poorly. Over time, you
may be able to generalize the risks on the projects at your
organization and devise a list of appropriate techniques. The
important part is that the techniques match the risks.

Example Mismatch
Imagine an organization that builds a three-tier system. The

first tier has the user interface, and is exposed to the internet.
The biggest risks might be usability and security. The second
and third tiers implement business rules and persistence; they
are behind a firewall. The biggest risks might be throughput
and scalability.

What often happens is that both teams follow the same
company-standard process or template and produce, say,
a module dependency diagram. The diagram is probably
somewhat helpful, but it takes the space of more helpful
techniques better matched to the project risks.

Following the Risk-Driven Model, the front-end and back-
end teams would apply different techniques. For example, the
front-end developers might create user interface mockups
and analyze their design for intrusion vectors. The back-end
developers might do performance modeling and impose con-
straints to enable scalability.

Are You Risk-Driven Now?
Many developers believe that they already follow a Risk-

Driven Model, or something close to it. Yet there are telltale
signs that many are not.

One sign is an inability to list the risks they confront and
the corresponding techniques they are applying. Any de-
veloper can answer the question, “Which features are you
working on?” but many have trouble with the question, “What
are your primary failure risks and corresponding engineering
techniques?” If risks were indeed primary, it would be an easy
question to answer. Another sign is that all developers use the
same techniques.

Most architecture templates have a section on risks, but
that is not the same as using risks to decide which techniques
to use. To be risk-driven in your architectural decision making,
you need to have a rationale that ties your actions (i.e., use of
architectural techniques) back to your risks.

Logical Rationale
The Risk-Driven Model has the useful property of yield-

ing arguments that can be evaluated. An example argument
would take this form:

We identified A, B and C as risks, with B being primary. We
spent time applying techniques X and Y because we believed
they would help us reduce the risk of B. We evaluated the re-
sulting design and decided that we had sufficiently mitigated
the risk of B, so we proceeded on to coding.

Other developers might disagree with this assessment, so
they could provide a differing argument with the same form,
perhaps suggesting that risk D be included. A productive,
engineering-based discussion of the risks and techniques can
ensue because the rationale behind your opinion has been
articulated and can be evaluated.

Incomplete Architecture Designs
When developers apply the Risk-Driven Model, they only

design the areas where they perceive failure risks. Most of
the time, applying a design technique means building a model
of some kind, either on paper or a whiteboard. Consequently,
the architecture model will likely be detailed in some areas
and sketchy, or even non-existent, in others.

For example, if developers have identified some perfor-
mance risks and no security risks, they would build models
to address the performance risks but those models would
have no security details in them. Still, not every detail about
performance would be modeled and decided. Remember that
models are an intermediate product and developers can stop
working on them once they have become convinced that the
architecture is suitable for addressing the risks.

Software Processes
Since the Risk-Driven Model applies only to architecture

design and is not a full software development process, it is
possible to apply it within essentially any process. A waterfall
process prescribes planned design in its analysis and design
phases, but does not tell you what kind of architecture and
design work to do, or how much to do. You can apply the
Risk-Driven Model during the analysis and design phases to
answer those questions.

Today, many developers follow iterative processes, and it
goes against the grain to bolt-on a several-month architecture
design phase. An iterative process does not have a desig-
nated place for design work, but architecture design could be
done at the beginning of each iteration. The amount of time
spent on design would vary based on the risks. Figure 1 pro-
vides a notional example of how the amount of design could
vary across iterations based on your perception of the risks.

Figure 1: An example of how the amount of design could
vary across iterations based on your perception of the risks. In
this example, more risk was perceived in iterations 0 and 2.

10 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Agile processes are usually special cases of iterative pro-
cesses, but they have the additional difficulty of fitting archi-
tectural work into a backlog. If the backlog must now contain
both user features and technical risks, it may be difficult for
business stakeholders to prioritize it.

A Spiral process and the Risk-Driven Model are cousins
in that risk is primary in both. The difference is that the Spiral
process, being a full software development process, prioritizes
both management and engineering risks and guides what hap-
pens across iterations. The Risk-Driven Model only guides de-
sign work to mitigate engineering risks, meaning that it would
help you understand which architecture techniques you should
use within a specific iteration of the Spiral process. Applying
the Risk-Driven Model to a Spiral process or the (Rational) Uni-
fied Process works the same as with an iterative process.

Guidance On Choosing Techniques
So far, you have been introduced to the Risk-Driven Model

and have been advised to choose techniques based on your
risks. You should be wondering how to make good choices. In
the future, perhaps a developer choosing techniques will act
much like a mechanical engineer who chooses materials by
referencing tables of properties and making quantitative deci-
sions. For now, such tables do not exist.

However, there are principles that underlie any table or any
veteran’s experience, principles that explain why technique X
works to mitigate risk Y. Here is a brief preview:

First, sometimes you have a problem to find while other
times you have a problem to prove, and your technique choice
should match that need. Second, some problems can be
solved with an analogic model while others require an analytic
model, so you will need to differentiate these kinds of models.
And third, some techniques have affinities, like pounding is
suitable for nails and twisting is suitable for screws.

Problems to Find and Prove
In his book How to Solve It, George Polya identifies two

distinct kinds of math problems: problems to find and prob-
lems to prove [7]. The problem, “Is there a number that when
squared equals 4?” is a problem to find, and you can test
your proposed answer easily. On the other hand, “Is the set of
prime numbers infinite?” is a problem to prove. Finding things
tends to be easier than proving things because for proof, you
need to demonstrate something is true in all possible cases.

When searching for a technique to address a risk, you
can often eliminate many possible techniques because they
answer the wrong kind of Polya question. Some risks are
specific, so they can be tested with straightforward test
cases. It is easy to imagine writing a test case for “Can the
database hold names up to 100 characters?” since it is a
problem to find. Similarly, you may need to design a scalable
website. This is also a problem to find because you only need
to design (i.e., find) one solution, not demonstrate that your
design is optimal.

Conversely, it is hard to imagine a small set of test cases
providing persuasive evidence when you have a problem to
prove. Consider, “Does the system always conform to the
framework Application Programming Interface?” Your tests
could succeed, but there could be a case you have not yet
seen, perhaps when a framework call unexpectedly passes
a null reference. Another example of a problem to prove is
deadlock: Any number of tests can run successfully without
revealing a problem in a locking protocol.

Analytic and Analogic Models
Michael Jackson, crediting Russell Ackoff, distinguishes be-

tween analogic models and analytic models [8]. In an analogic
model, each model element has an analogue in the domain of
interest. A radar screen is an analogic model of some terrain,
where blips on the screen correspond to airplanes—the blip
and the airplane are analogues.

Analogic models support analysis only indirectly, and usu-
ally domain knowledge or human reasoning are required. A
radar screen can help you answer the question, “Are these
planes on a collision course?” but to do so you are using your
special purpose brainpower in the same way that an outfield-
er can tell if he is in position to catch a fly ball.

An analytic model, by contrast, directly supports compu-
tational analysis. Mathematical equations are examples of
analytic models, as are state machines. You could imagine an
analytic model of the airplanes where each is represented by
a vector. Mathematics provides an analytic capability to relate
the vectors, so you could quantitatively answer questions
about collision courses.

Barry Boehm wrote about risk in the context of software develop-
ment with his paper on the Spiral Model of software development
[1]. The Risk-Driven Model would, on first glance, appear to be
quite similar to the Spiral Model of software development, but the
Spiral Model applies to the entire development process, not just the
design activity.

The Unified Process and its specialization, the Rational Unified
Process, are iterative, spiral processes [2, 3]. They highlight both
the importance of addressing risks early and the use of architecture
to address risks. The (R)UP advocates working on architecturally
relevant requirements first, in early iterations.

Barry Boehm and Richard Turner discuss risk and agile pro-
cesses [4] and the summary of their judgment is, “The essence of
using risk to balance agility and discipline is to apply one simple
question to nearly every facet of process within a project: Is it riskier
for me to apply (more of) this process component or to refrain from
applying it?”

The Risk-Driven Model is similar to global analysis as described
by Christine Hofmeister, Robert Nord and Dilip Soni [5]. The inten-
tion of global analysis is not to optimize the amount of effort spent
on architecture, but rather to ensure that all factors have been
investigated.

This article is excerpted from a chapter in the book Just Enough
Software Architecture: A Risk-Driven Approach and the full chapter
is available for download [6]. It additionally discusses engineering
versus management risks, and details on application of the Risk-
Driven Model to various software development processes.

ADDITIONAL READING

CrossTalk—Nov/Dec 2010 11

ARCHITECTURE TODAy

When you model software, you invariably use symbols,
whether they are Unified Modeling Language (UML) ele-
ments or some other notation. You must be careful because
some of those symbolic models support analytic reasoning
while others support analogic reasoning, even when they use
the same notation. For example, two different UML mod-
els could represent airplanes as classes, one with and one
without an attribute for the airplane’s vector. The UML model
with the vector enables you to compute a collision course,
so it is an analytic model. The UML model without the vector
does not, so it is an analogic model. So simply using a defined
notation, like UML, does not guarantee that your models will
be analytic. Architecture Description Languages are more
constrained than UML, with the intention of nudging your
architecture models to be analytic ones.

When you know what risks you want to mitigate, you can
appropriately choose an analytic or analogic model. For
example, if you are concerned that your engineers may not
understand the relationships between domain entities, you
may build an analogic model in UML and confirm it with
domain experts. Conversely, if you need to calculate response
time distributions, then you will want an analytic model.

Techniques With Affinities
In the physical world, tools are designed for a purpose:

hammers are for pounding nails, screwdrivers are for turning
screws and saws are for cutting. You may sometimes hammer
a screw, or use a screwdriver as a pry bar, but the results are
better when you use the tool that matches the job.

In software architecture, some techniques only go with
particular risks because they were designed that way and it is
difficult to use them for another purpose. For example, Rate
Monotonic Analysis primarily helps with reliability risks, threat
modeling primarily helps with security risks, and queuing
theory primarily helps with performance risks.

Conclusion
This article introduces the Risk-Driven Model that encour-

ages developers to: (1) prioritize the risks they face, (2)
choose appropriate architecture techniques to mitigate those
risks, and (3) re-evaluate remaining risks. It encourages just
enough software architecture by guiding developers to a
prioritized subset of architecture activities. Design can hap-
pen up-front but it also happens during a project. Low-risk
projects can succeed without any planned architecture work,
while many high-risk projects would fail without it.

The Risk-Driven Model walks a middle path that avoids the
extremes of complete architecture documentation packages and
complete architecture avoidance. It follows the principle that your
architecture efforts should be commensurate with the risk of
failure. The key element of the Risk-Driven Model is the promo-
tion of risk to prominence. Each project will have a different set
of risks, so each will need a different set of techniques. To avoid
wasting your time and money, you should choose architecture
techniques that best reduce your prioritized list of risks.

George Fairbanks is the president of
Rhino Research, a software architec-
ture training and consulting company.
His new book, Just Enough Software
Architecture: A Risk-Driven Approach,
has been widely praised by academics
and practicing software developers. His
Ph.D. work at Carnegie Mellon University
introduced design fragments, a new way
to specify and assure the correct use of
frameworks through static analysis. He
has been teaching software architecture
and object-oriented design for over a de-
cade. He has written code for telephone
switches, the Eclipse IDE, Android apps
and his own web dot-com startup.

Rhino Research
george.fairbanks@rhinoresearch.com
2445 7th St, Boulder CO 80304
(303) 834-7760

ABOUT THE AUTHOR

1. Boehm, Barry. “A Spiral Model of Software Development and Enhancement.”
 21.5 IEEE Computer (1988): 61–72.
2. Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software
 Development Process. Addison-Wesley Professional, 1999.
3. Kruchten, Philippe. The Rational Unified Process: An Introduction.
 Addison-Wesley Professional, 2003.
4. Boehm, Barry and Richard Turner. Balancing Agility and Discipline:
 A Guide for the Perplexed. Addison-Wesley Professional, 2003.
5. Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied Software
 Architecture. Addison-Wesley, 2000.
6. Fairbanks, George. Just Enough Software Architecture: A Risk-Driven Approach
 <http://RhinoResearch.com/book>. Marshall & Brainerd, 2010.
7. Polya, George. How To Solve It: A New Aspect of Mathematical Method.
 Princeton University Press. 2004.
8. Jackson, Michael. Software Requirements and Specifications. Addison-Wesley. 1995.

REFERENCES

12 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Time frames for new feature releases continue to shorten,
as exemplified by Z. Lemnios, Director of Defense Research
and Engineering:

“Get me an 80% solution NOW rather than a 100% solu-
tion two years from now and help me innovate in the field” [1].

To meet these demands, government and government
contractors are now looking closely into the adoption of agile
practices [2] [3].

End users demand Enhancement Agility, the ability to keep
adjusting the product to emerging needs through the addition
of new features. Existing approaches to achieving Enhance-
ment Agility vary, depending upon the lifecycle under which
the product or system is being developed.

Under the Waterfall paradigm of software development,
an extensive requirements phase is conducted to anticipate
needs for both the initial and subsequent releases of the
product or system being developed. Following the require-

Nanette Brown, Robert Nord, Ipek Ozkaya
Software Engineering Institute, Carnegie Mellon University

Abstract: Industry and government stakeholders continue to demand
increasingly rapid innovation and the ability to adjust products and
systems to emerging needs. Amongst all the enthusiasm for using
Agile practices to meet these needs, the critical role of the underlying
architecture is often overlooked.

ments phase, an architecture phase is conducted to develop
a comprehensive underlying technical infrastructure. Within
the Waterfall model, once the architecture is implemented,
Enhancement Agility can be achieved, provided that the emer-
gent user needs fit within the boundaries anticipated during
the requirements phase.

However, taking the Waterfall approach presents two poten-
tial problems. First, when working in a new, unknown emergent
problem space, building an architectural platform that reliably
anticipates all future needs is an extremely difficult undertak-
ing. Secondly, under the Waterfall paradigm, considerable effort
and expense is incurred before any actual value is achieved
(i.e., before any features are delivered to the user).

In contrast to Waterfall methodologies, Agile software
development methods focus on delivering observable benefits
to the end users through working software, early and often. A
backlog of functional “user stories” is created. These stories
are prioritized by end users and/or the product owner, acting
as the user advocate. Development teams draw stories from
the backlog and implement them in accordance with an end-
user prioritization scheme. The Agile community’s focus on
continuous delivery of user-valued stories is another means of
achieving Enhancement Agility. However, this approach also
has its shortfalls, stemming mainly from an inadequate focus
on dependency analysis.

Individual stories cannot be regarded in isolation. Stories
have dependencies on other stories. In Software by Numbers,
Denne and Cleland-Huang use the term “greedy algorithm”
to refer to a prioritization scheme which focuses strictly on
implementing the story with the highest immediate value [4].
They point out that, at times, higher-value stories may depend
upon (i.e., require prior implementation of) lower value stories.
Thus, truly optimizing value to the user requires teams to look
ahead and anticipate future needs.

Similarly, stories have dependencies upon the architectural
elements of the system. These dependencies exist regardless
of domain stability or technical maturity. They exist regardless
of whether the system is in its initial development stages or
has been deployed and has been in the field for several years.
The ability to identify and analyze architectural dependencies
and incorporate dependency awareness into a responsive
development model exemplifies the notion of Architectural
Agility. It is our thesis that without Architectural Agility, En-
hancement Agility cannot be reliably sustained.

Architectural Agility and Release Planning
Architectural Agility addresses shortcomings that oc-

cur within both the Waterfall and the Agile lifecycle models.
Architectural Agility allows architectural development to follow
a “just-in-time” model. Delivery of customer-facing features
is not delayed pending the completion of exhaustive require-
ments and design activities and reviews. At the same time,
Architectural Agility maintains a steady and consistent focus
on continuing architectural evolution in support of emerging
customer-facing features. It avoids the pitfalls of a myopic
focus on user stories, which over time can lead to increased
complexity and “tortured” implementation choices as develop-

Enabling Agility
Through
Architecture

CrossTalk—Nov/Dec 2010 13

ARCHITECTURE TODAy

ers seek to incorporate features that the architecture was
not designed to support. Proceeding under the latter para-
digm leads to the all-too-familiar situation in which features
gradually take longer and longer to implement, the code
becomes more and more buggy, and eventually management
is informed that the system must be scrapped and rewritten
“from scratch.”

Our mantra for Architectural Agility is “informed anticipa-
tion.” The architecture should not over-anticipate emergent
needs, delaying delivery of user value and risking develop-
ment of overly complex and unneeded architectural con-
structs. At the same time, it should not under-anticipate future
needs, risking feature development in the absence of archi-
tectural guidance and support. Architectural Agility requires
“just enough” anticipation. To achieve the quality of being
“just enough,” architectural anticipation must be “informed.”
Dependency analysis, real options analysis and technical debt
management are the tools through which “informed anticipa-
tion” can be achieved. The remainder of this article will illus-
trate the application of these techniques through the practice
of release planning.

Figure 1 shows a release planning board that represents
the typical heuristics used within the Agile community for
release planning. Desired stakeholder capabilities are repre-
sented as “user stories.” These user stories are allocated to
iterations in order of their priority to the end user.

Figure 2 shows an enhanced release planning board that
incorporates planning for development of the underlying
software architecture. In addition to selecting stories to be
developed within each iteration, the team identifies the archi-
tectural elements that must be implemented to support them.
This version of the release planning board also incorporates
a “technical research” activity, recognizing that architectural
development frequently requires investigation and analysis of
alternate approaches. Finally, the term “capabilities” has been
used in place of “user stories,” reflecting a need to consider
non-functional, quality attribute requirements, as well as the
need to incorporate requirements across a broad range of
stakeholders.

As an example, consider the Apps for the Army initiative [5].
The ability to add new and innovative apps quickly and easily
exemplifies the concept of Enhancement Agility. However,
Architectural Agility is required to supply the underlying
technical infrastructure to support the app-based develop-
ment model. The app-based development model includes a
developer framework and run-time infrastructure that are part
of the notion of an app store.

A conceptual architecture for an app store is illustrated in
Figure 3. This conceptual architecture describes the essential
high-level architectural elements such as content manage-
ment, service management, data access, security and a range
of external target devices that can access/manipulate the
apps. Using an agile approach of starting small and growing
the system, the team selects capabilities that support a small
number of predetermined apps in the early iterations. This
requires identifying those architectural elements within the
business logic, data access, and service management com-

User Stories

Iteration 3Iteration 2Iteration 1

User Stories

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Figure 1: Agile iteration planning – focus on User Stories

Figure 2: Architectural elements in agile iteration planning

http://www.navair.navy.mil

14 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

ponents that support these capabilities. In later iterations, the
team expects to focus on scaling the system in the number
of apps and users, enhancing security, and allowing users to
contribute their own apps. Architectural elements within the
security, content management, and publishing components
need to be scrutinized to see which are needed to support
these additional capabilities.

Implementing this type of planning heuristic requires the
ability to do dynamic dependency management in a manner
that is both rigorous and responsive. Dependencies between
capabilities and architectural elements need to be identified
for each iteration in order to prioritize and schedule work
within a release.

Content
warehouse

Self publishing

UI components
(Branded application, localization, target device(s))

Service interface

Data access
logic

Service
agents

Business Logic

Store
admininstration

Catalog
management

Order
management

Data
collection

S
ecurity

Services/apps databaseAccount database

Users

System component

Component relationship

Database

External user environment

Re
po

rt
in

g

A
pp

 c
at

al
og

 m
an

ag
em

en
t

Sa
le

s
m

an
ag

em
en

t

U
pg

ra
de

 m
an

ag
em

en
t

Pr
om

ot
io

n
m

an
ag

em
en

t

O
rd

er
 m

an
ag

em
en

t

A
cc

ou
nt

 m
an

ag
em

en
t

Reporting x x x x x x 6
App catalog management x x x x x x 6
Sales management x x x x 4
Upgrade management x 1
Promotion management x x x x x 5
Order management x 1
Account management x 1
UI components x x x x x x x 7
Service interface x x x x x x x 7
Content warehouse x x x 3
Self publishing x x x 3
Account database x x x x 4
Services/apps database x x 2
Data access logic x x x 3
Service agents x x x x x 5
Security x x x x x x 6
Order management x x x 3
Data collection x x 2
Store administration x x x x x x x 7
Catalog management x x x 3

9 11 4 9 5 8 9

Ca
pa

bi
lit

ie
s

A
rc

hi
te

ct
ur

al
 e

le
m

en
ts

Architecture Dependency Management
Dependency management has been studied extensively at

the level of code artifacts. Applying dependency management
at the architecture level is beginning to show promising re-
sults due to increasingly effective tool support. These metrics
can be extracted from the architecture, represented in the
form of a Dependency Structure Matrix (DSM). The DSM is
a compact representation which lists all constituent subsys-
tems/activities and the corresponding information exchange
and dependency patterns. Domain Mapping Matrices (DMMs)
augment DSM analyses and can be used to represent the de-
pendencies between capabilities and architectural elements.

Returning to the example, dependency analysis for the
app store must consider dependencies between capabilities

Figure 3: Conceptual App Store Architecture and High-Level Capability Dependencies

CrossTalk—Nov/Dec 2010 15

ARCHITECTURE TODAy

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Fulfill Current Release Prepare for Future Release

nancial options theory to quantify the value of flexibility in real
assets and business decisions to determine the value of such
delayed decision making. And both common sense and the
theory demonstrate that the higher the uncertainty, the more
it makes sense to wait to act and defer the decisions. From
this perspective, the agile community has used the concept of
real options in separating concerns that have immediacy and
those that can possibly wait.

In agile release planning, real options analysis is a way to
look at the allocation of architectural elements to releases
based on their dependencies from the perspective of future
value [7]. In architecture terms, taking an option could be
applying an architecture pattern, providing a well-structured
modular design that supports Enhancement Agility. Real
options analysis can be informed and complemented by a
consideration of technical debt.

The technical debt metaphor [8] highlights that doing
things the quick and dirty way for short-term benefit sets us
up with a technical debt. Like a financial debt, the technical
debt incurs interest payments, which come in the form of the
extra effort that we have to do in future development because
of suboptimal design choices. We can choose to continue
paying the interest, or we can pay down the principal by
refactoring and improving the design. Although it costs to pay
down the principal, we gain by reduced interest payments in
the future.

Agile development methods aim to manage technical debt
through refactoring practices. Refactoring is restructuring an
existing body of code, altering its internal structure without
changing its external behavior. However, when significant
architectural change is needed, such small, local refactoring
efforts cannot compensate for the lack of an architecture
that is necessary to guide the architect in achieving the goals
of the system. In this case, lack of Architecture Agility starts
compromising Enhancement Agility.

Figure 4: Informed anticipation in the context of agile release planning

as well as dependencies between architectural elements
and capabilities. These dependencies are identified in the
matrix in Figure 3. The capabilities portion of this matrix is an
example of a DSM. An X mark indicates that the capability in
the row provides information to the capability in the column.
Reading across the row labeled “App catalog management,” it
is clear that all other capabilities depend on it. The architec-
tural elements portion of the matrix is an example of a DMM.
A marked cell indicates that the architectural element in the
row implements an aspect of the capability represented in the
column. Reading down the column labeled “App catalog man-
agement,” it becomes clear that the App catalog management
capability depends on almost all of the architectural elements.
Having this kind of view can be essential in focusing the
iterations within releases.

Metrics associated with dependency also provide data for
inferring the likely costs of change propagation, especially
when dependencies between architectural elements are also
considered (not shown in Figure 3). One such example is
discussed in Carriere et al where the value of re-architecting
decisions needed to be understood to determine if the ex-
pense to implement them was justified [6].

Architecture Heuristics Focused on Value: Real
Options Analysis and Technical Debt Management

For effective Architectural Agility, dependencies between
capabilities and architectural elements need to be identified
not only to fulfill the current release, but to plan for future
releases as well (Figure 4). Informed anticipation requires
incorporating architecture heuristics focused on value into
the planning model. Real options analysis and technical debt
management offer potential models to make an informed
choice and find the right balance of agility, innovation, and
speed on the one hand, and governance, flexibility, and plan-
ning for future needs on the other.

This additional set of considerations adds a new dimen-
sion to the release planning board. This added dimension
allows the identification of architectural constructs that, while
not required for the current release, should potentially be
incorporated into the current release in anticipation of future
stakeholder goals.

As an example, the initial number of deployed apps is ex-
pected to be small, so capabilities such as scalability could be
deferred and assigned to a future release. However, it is also
true that by setting up an app store scalability infrastructure—
that is, buying the option of scaling up—you can reduce your
technical debt down the road. By choosing to take a short-
cut—not buying the option—you incur possible technical debt.

The question of how to optimally allocate architectural ele-
ments that deal with scalability to releases can benefit from
applying real options analysis. Real options analysis is a finan-
cial analysis model to help determine whether some upfront
cost should be spent (buying the option) to have the right, but
not the obligation, to take an action in the future (exercising
the option). The real options analysis method applies the fi-

16 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Informed Anticipation Guiding Agile Release Planning
Unifying the concepts of technical debt, real options, and

uncertainty management is a common focus on the ques-
tion “Should I take a certain action today in anticipation of
increased benefit and reduced cost in the future?” Taking
the correct action today provides an option which can be
acted upon in the future. This is where the agile mindset and
architecture reasoning tend to diverge. Agile projects focus
on stories that are needed in the current release and rely on
code-level refactoring to incorporate future stories. However,
relying only on code-level refactoring often does not suffice,
especially in large-scale development.

Spending some time architecting can provide better options
in many large-scale development contexts that struggle with
applying agile techniques. The cost and benefit tradeoff is
often misrepresented as a choice between “do nothing” and
“spend a lot of time on something you may not need.” The
concrete benefit of having real options requires the tradeoff
to be made between “do nothing, possibly suffer a lot later”
and “do just a little, suffer less later.”

Identifying architectural elements that enable future stake-
holder goals requires mapping options to releases across the
lifespan of the system. A real option often requires some por-
tion of the system to be developed today to enable future de-
velopment at ease. Understanding which release that option
needs to be allocated to and how its cost will be paid during
that release are key to success. The release planning board
provides a visual means to monitor such elements throughout
the releases. Although lower in cost, options are not without
expense, so there should not be too many. But cost is not the
only issue, so a large-scale project without any options should
be viewed with a critical eye. Ideally, the decision to develop
an option should be justified by the desire to mitigate the risk
of an uncertain future.

Identifying dependencies within a given release also
requires understanding the deliberate shortcuts taken to
achieve the high-priority functionality. These shortcuts (tech-
nical debt) need to be revisited at each iteration. Monitor-
ing these decisions is the first step to realizing the good
enough, but cost effective solution today without endanger-
ing the needed full solution tomorrow. Once identified, the
decision can be made at appropriate times to emphasize
more architecting and paying off the debt as opposed to
adding new features.

Looking back at the conceptual architecture shown in
Figure 3, even at this level, several decisions can be made
by taking advantage of dependency analysis in relationship
to real options and technical debt concepts. The App catalog
management capability describes the feature allowing users
to author and add apps to the app store. The matrix shows
that the Self-publishing component has a role in implement-
ing this feature. Depending on the cost and value of early
delivery versus the level of control, two approaches are
available. In a quick delivery approach, rather than implement
the full functionality in a separate Self-publishing component,
initially a subset could be implemented in the Store admin-

istration component that has been selected for implemen-
tation in an early release for other reasons. Administrator
users have full access to this component through the Sales
management capability. This approach would depend on the
administrator to ensure that only authorized and well-behaved
apps are published, but since this approach limits exposure
of the infrastructure and is simpler to implement, it could be
deployed quicker. In conjunction with this approach, preparing
for the future release and creating the infrastructure for self
publishing can be an option for future investment. When the
time comes, the infrastructure could be self enabled, increas-
ing the innovation of apps by allowing users to submit their
own without external controls.

Technical debt is most often associated at the level of
detailed design and code artifacts and tool support is begin-
ning to show promise [9]. An analog for monitoring and
managing technical debt in the architecture would provide
analyses earlier in the development cycle for keeping the
project on track. Some of these measures exist and can be
used today. For example, Hinsman from L.L. Bean [10] used
a tool to analyze and monitor architecture violations based
on dependency analysis in an ongoing effort to evolve and
improve its architecture. Once the architecture was restruc-
tured, the process was modified to support agility through
keeping the architectural elements visible so that they could
be explicitly managed.

Key Take-Aways
A focus on architecture is not in opposition to Agile values

and principles. In fact, ongoing sustainable achievement of
Enhancement Agility is only possible when coupled with
Architectural Agility. To achieve Architectural Agility, the Agile
community must first expand its focus on end user stories
and address the broader topic of capabilities, including quality
attribute requirements and a diverse range of stakeholders.
The use of dependency analysis practices can be used to
facilitate a “just-in-time” approach to building out the architec-
tural infrastructure. Real options and technical debt heuristics
can be used to optimize architectural investment decisions
by analyzing uncertainty and tradeoffs between incurred cost
and anticipated value.

DISCLAIMER

Copyright 2010 by Carnegie Mellon University (and co-owner).

NO WARRANTY

This Carnegie Mellon University and software engineering institute material is furnished on an “as-is”
basis. Carnegie Mellon University makes no warranties of any kind, either expressed or implied, as to
any matter including, but not limited to, warranty of fitness for purpose or merchantability, exclusivity,
or results obtained from use of the material. Carnegie Mellon University does not make any warranty
of any kind with respect to freedom from patent, trademark, or copyright infringement.

This work was created in the performance of Federal Government Contract Number FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part
and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

CrossTalk—Nov/Dec 2010 17

ARCHITECTURE TODAy

1. Lemnios, Z. (2010) Statement of Testimony Before the United States House
 of Representatives Committee on Armed Services Subcommittee on Terrorism,
 Unconventional Threats and Capabilities, March 23, 2010. [cited on June 11,
 2010] URL: <http://www.dod.mil/ddre/Mar232010Lemnios.pdf>
2. Cohan, Sean (2007) Successful Integration of Agile Development Techniques
 within DISA, AGILE 2007.
3. Crowe, P, Cloutier, R. (2009) “Evolutionary Capabilities Developed and Fielded
 in Nine Months,” CrossTalk, May 2009. URL:
 <http://www.stsc.hill.af.mil/crosstalk/2009/05/0905CroweCloutier.html>
4. Denne, M., & Cleland-Huang, J. Software by Numbers: Low-Risk, High-Return
 Development. Upper Saddle River, N.J.: Prentice Hall. 2004.
5. CIO/G-6 Public Affairs. G-6 launches ‘Apps for the Army’ challenge. [cited
 on June 11, 2010] URL: <http://www.army.mil/-news/2010/03/01/35148-g-6-
 launches-apps-for-the-army-challenge/>
6. Carriere, J. Kazman, R., Ozkaya, I. “A Cost-Benefit Framework for Making
 Architectural Decisions in a Business Context” in Proceedings of the 32nd
 International Conference on Software Engineering, Vol 2, pp:149-157, 2010
7. Bahsoon, R., Emmerich, W., Macke, J. “Using Real Options to Select Stable
 Middleware-Induced Software Architectures.” IEE Proceedings Software - Special
 issue on relating software requirements to architectures 152(4) (2005) ISSN
 1462-5970, pp. 153-167, IEE press.
8. Fowler, M. Technical Debt Quadrant. Bliki [Blog] 2009 [cited on June 14,
 2010]; URL: <http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html>
9. Gaudin, O. Evaluate your technical debt with sonar, [cited on June 11, 2010]
 URL: <http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar>
10. Hinsman C., Sangal, N., Stafford, J. Achieving Agility Through Architecture
 Visibility, in LNCS 5581/2009, Architectures for Adaptive Software Systems,
 2009 pp.116-129

The authors work in the Research, Technology, and System
Solutions Program at the Software Engineering Institute and
are currently engaged in a research project on “Communi-
cating the Value of Architecting within Agile Development.”

Nanette Brown is a Visiting Scientist and is a Principal
Consultant with NoteWell Consulting. She is engaged in ac-
tivities focusing on architecture within an Agile context. Pre-
viously, Nanette worked at Pitney Bowes Inc., most recently
as Director of Architecture and Quality Management, where
she was responsible for design and implementation of a
customized SDLC that blended RUP and Agile practices.

Robert L. Nord is a senior member of the technical staff
and works to develop and communicate effective methods
and practices for software architecture. He is co-author of
the practitioner oriented books, Applied Software Archi-
tecture and Documenting Software Architectures: Views
and Beyond, published by Addison-Wesley and lectures on
architecture-centric approaches.

Ipek Ozkaya is a senior member of the technical staff. Her
primary work is on developing techniques and methods for
improving software architecture practices by focusing on
software economics and requirements management. Cur-
rently, she serves as the technical lead of the agile develop-
ment and software architecture independent research work,
in addition to leading work in architecture-based system
evolution. In addition she contributes to teaching of several
courses in the Software Architecture Certificate Program
at the SEI.

Contact Information

Nanette Brown
nb@sei.cmu.edu

Robert L. Nord
rn@sei.cmu.edu

Ipek Ozkaya
ozkaya@sei.cmu.edu

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue
Pittsburgh, PA 15213-3890
Tel: +1 (412) 268-7700
Fax: +1 (412) 268-5758
URL: http://www.sei.cmu.edu/architecture/

ABOUT THE AUTHORS REFERENCES

18 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

In May of 2009, Lieutenant General Ross Thompson, then
the military deputy to the assistant secretary of the Army
for acquisition, logistics and technology (ASA[ALT]), issued
a memorandum directing each Program Executive Office
(PEO) to designate a Chief Software Architect (CSWA). The
directive was another step in the Army’s aggressive efforts
to instill architecture-centric practices across its acquisition
programs. Since late 2002, the ASA(ALT) has been working
with the Carnegie Mellon® Software Engineering Institute
(SEI)—a federally funded research and development center—in
a strategic partnership known as the Army Strategic Software
Improvement Program (ASSIP). The aim of this partnership is
to improve the Army’s ability to acquire software-reliant sys-
tems (Figure 1)—i.e., systems whose behavior (e.g., functionality,
performance, safety, security, interoperability, and so forth) is
highly dependent on software in some significant way. Through
this partnership, the Army is enhancing its ability to be a “smart
buyer” of software-reliant systems.

 Figure 1: A typical software-reliant system: the
 M1 Abrams tank relies on software for navigation,
 targeting, precision fires, and more.1

Early ASSIP investigations into Army acquisition programs
indicated, among other things, that while software-architec-
ture practices were deemed important for software-reliant
systems programs, the methods and skills to carry out those
practices were perceived to be inadequate. Hence, the ASSIP
formulated an initiative to raise the organic capabilities of the
Army acquisition workforce in the area of architecture-centric
software development. This article discusses the Army’s soft-
ware architecture initiative and examines the human factor
behind the technology: the Chief Software Architect.

The Importance of Software Architecture
When viewed in terms of program impact, the reason for fo-

cusing on software architecture becomes obvious. Experience
confirms that the quality and longevity of a software-reliant
system is largely determined by its architecture. The software
architecture underpins a system’s software design and code; it
represents the earliest design decisions, ones that are difficult
and costly to change later [1]. Further, the software architecture
supports, or impedes, the desired system qualities that are
manifest in the software, so getting the architecture “right” has
enormous implications both for the software and for the parent
system that is reliant upon that software to deliver any part of
its functionality. The right software architecture will facilitate
user acceptance of a system; the wrong one will do quite
the opposite. As confirmed by a number of studies in the last
decade [2, 3, 4, 5], sound software architectural practices are
essential to successful software-reliant systems programs.

However, history has shown that the linkage between
software architecture practices and successful acquisition of
software-reliant systems has not been sufficient motivation to
incorporate such practices in acquisition programs. According
to a 2009 NASA study on flight software complexity, “Good
software architecture is the most important defense against
incidental complexity in software designs, but good architect-
ing skills are not common” [6]. Indeed, reports repeatedly cite
poor architectural practices and a general lack of under-
standing of the need for software architecture as a source of
acquisition program difficulties [7, 8, 9, 10, 11].

Thus, while an architecture-centric development approach
is an acknowledged good practice in software-reliant systems
programs, it is rarely executed effectively or rigorously.

Abstract: The U.S. Army is aggressively pursuing software architecture
practices as a means of reducing risk in its acquisition programs. Central
to this strategy is creating an appropriately skilled workforce capable of
overseeing software development activities in its innovative programs.
The latest development in the Army’s long-standing pursuit of improving
the software talents of its acquisition workforce is the establishment of
Chief Software Architects in its program executive offices. This article
discusses this latest demonstration of the Army’s commitment to adopting
an architecture-centric acquisition approach and its focus on developing
the software architecture skills of its acquisition workforce.

The Chief software
Architect in U.s.
Army Acquisition
Stephen Blanchette, Jr. and John Bergey
Software Engineering Institute

CrossTalk—Nov/Dec 2010 19

ARCHITECTURE TODAy

The ASSIP Software Architecture Initiative
Recognizing that software architecture is still one of the

key technical challenge areas facing its Project Management
Offices (PMOs), the Army devoted a significant part of its AS-
SIP resources to address the problem by creating a software
architecture initiative. Initially, a training component formed
the core of the initiative.

The SEI already had available a formal training curriculum
for software architecture,2 and the ASSIP elected to use it as
the basis of the software architecture initiative’s training ele-
ment. The curriculum consists of six courses:
>> Software Architecture: Principles and Practices
>> Documenting Software Architectures
>> Software Architecture Design and Analysis
>> Software Product Lines
>> SEI Architecture Tradeoff Analysis Method® (ATAM®)
 Evaluator Training
>> ATAM Leader Training

The SEI delivered the curriculum at the Army Software
Engineering Centers (SECs) using the same materials and in-
structors as in its publicly offered classes. The SECs provided
the most central location for many participants since most
of the Army’s PMOs are located in close proximity to one of
the SECs. Students who completed the prescribed course
sequences earned certificates just as if they had attended the
regular public offerings.3

The training program enjoyed strong participation, a good
indication of both need and interest within the Army acquisi-
tion community. In fact, demand exceeded expectations and
forced the waving of class size restrictions in a few instances.
Additionally, participation was broad, with representation from
all 11 PEOs4 and all of the Army’s software centers. Well over
500 Army technical professionals have attended at least part
of the curriculum, with more than 25% having earned at least
one certificate. Figure 2 summarizes these results.5,6

In addition to training practitioners, the ASSIP builds
awareness at higher levels: A rotating list of Army senior
leaders, personally invited by the MILDEP, gain exposure to
software architecture and other important software engineer-
ing concepts three times a year during the ASSIP senior
leader education program.

Beyond training, the ASSIP software architecture initia-
tive grew to include a skill-building component. The initiative
sponsored several ATAM-based software architecture evalua-
tions, with the proviso that trained Army evaluators would par-
ticipate as evaluation team members. (Projects that had not
yet developed a software architecture conducted Quality Attri-
bute Workshops, or QAWs, usually as a precursor to an ATAM
evaluation.) Table 1 shows the projects that have participated
to date. The evaluations allowed trained Army personnel to
practice their skills and also introduced architecture-centric
practices across a variety of Army projects.

Figure 2: Summary of ASSIP Architecture Training – Army Participants

20 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Table 1: Projects Employing Architecture-Centric Practices
Army Project (in alphabetical order) ATAM QAW

Aerial Common Sensor

Army Battle Command System

Command Post of the Future

Common Avionics Architecture System

Distributed Common Ground Station – Army

Force XXI Command Brigade-and-Below

Future Combat Systems

Integrated Fired Control

Joint Tactical Common Operational Picture Workstation

Manned/Unmanned Common Architecture Program

Network Operations Data Product Development Environment

One Semi-Automated Forces

Sequoyah

Warfighter Information Network – Tactical

The Role of the Army’s CSWAs
Having trained a cadre of acquisition professionals capable

of implementing architecture-centric practices, the next step
for the Army was to begin the institutionalization of software
architecture practices throughout its acquisition offices. LTG
Thompson decided that the best way to accomplish that goal
was to establish Chief Software Architects in the program
executive offices. Each PEO has oversight responsibility for a
domain of related projects and products:7

>> PEO Ammunition (Ammo)
>> PEO Aviation (AVN)
>> Joint PEO Chemical and Biological Defense (CBD)
>> PEO Combat Support and Combat Service Support
 (CS&CSS)
>> PEO Command Control and Communications –
 Tactical (C3T)
>> PEO Enterprise Information Systems (EIS)
>> PEO Ground Combat Systems (GCS)
>> PEO Integration
>> PEO Intelligence, Electronic Warfare and Sensors
 (IEW&S)
>> PEO Missile and Space (MS)
>> PEO Simulation, Training, and Instrumentation (STRI)
>> PEO Soldier

Each CSWA is responsible for providing guidance for soft-
ware issues across a PEO’s portfolio of programs. The scope
of responsibility is broad; the CSWAs are accountable for
oversight and management of all software being developed
or acquired within their respective PEOs. Consequently, the
position requires strong software competence and pertinent
training. Particularly notable in the CSWA directive is the
specific requirement for training. The intent is that the position
is not just another task in someone’s job jar; the CSWAs are
expected to possess or obtain skills relevant to the posi-
tion. Each CSWA must complete training equivalent to the
SEI course series for Software Architecture Professionals. A
subset of the architecture curriculum, the Software Archi-
tecture Professional series consists of a foundational course
in software architecture principles and practices (including
a compulsory competency examination), as well as in-depth
courses covering essential concepts for effectively designing
and analyzing software architectures, effective documentation
methods, and an introduction to software product line con-
cepts. These are advanced topics; the coursework assumes
attendees already are practicing software professionals with
responsibility for designing, developing, or managing the
construction of software-reliant systems.

According to a recent study, these architecture-centric
practices have had a positive impact [12]. As shown in Figure
3, most projects reported significant improvement in their
architecturally significant artifacts (including system quality at-
tributes, software architectures themselves, and architecture-
related risks). The architecture teams achieved an under-
standing of stakeholder expectations and the implications
of architectural decisions on user needs [12]. Additionally,
almost all projects experienced very substantial or significant
improvement in stakeholder communication (see Figure 4).
Stakeholders, collectively, achieved a common understand-
ing of the systems under development, which increased the
likelihood that those systems would address expectations
and user needs (and, consequently, improved the chances for
program success) [12].

CrossTalk—Nov/Dec 2010 21

ARCHITECTURE TODAy

Figure 3: Architecture-Centric Practices Improve Artifacts

Figure 4: Architecture-Centric Practices Improve Communication

In August 2009, the CSWAs met together for the first
time during an ASSIP Action Group meeting. There, they
fleshed out their collective responsibilities in more detail. They
identified their primary task as providing support to project
managers (PMs) with their software processes, including
monitoring software architecture development from initial
design decisions throughout the acquisition life cycle in order
to identify and mitigate software risks, linking architectural
components to mission drivers, and focusing on stakeholder
requirements. The CSWAs will help ensure every PM has an
appropriately documented software architecture and will help
to evaluate how well individual systems meet the appropriate
quality attributes. Beyond the architecture, the CSWAs will
assess and evaluate software cost estimates in a system life

cycle context for portfolio programs as well as review and
endorse system engineering plans with their respective Chief
System Engineers to ensure those plans leverage appropriate
standards8 and appropriate architecture-centric practices.

A second task for the CSWAs is to establish the neces-
sary infrastructures within their PEOs to support software
objectives, including issuing guidance to the PMs on software
architecture requirements, identifying and enforcing any PEO-
specific system quality attributes that will be implemented in
software, and providing guidance for software architecture
design and reviews to ensure consistent implementation of
best practices.

The CSWAs’ third task is to decide the best ways to lever-
age software architecture to mitigate program risks, especially
with regard to analysis in response to integration and interop-
erability challenges. In particular, they will ensure development
of software architectures in a system of systems context to
address the interoperability requirements that are becoming
more common across all Army systems.

Lastly, the CSWAs will participate in the ASSIP and other
Army-wide communities of interest to exploit opportunities for
commonality across the PEO portfolios.

Way Ahead
The Office of the DoD Chief Information Officer issued a

white paper [13] on a competency framework for the DoD
Architect that noted three root causes for shortcomings in
architecture practices across the DoD:
>> Inability to leverage the benefits of an architecture
 due to inadequate training on the part of stakeholders
 or inadequate communication on the part of architects
>> Lack of incentives to encourage the professional
 growth of architects in the DoD
>> Lack of visibility into the existence or value of
 architecture training

All the services have made some strides with respect to
system-level architecture (the Navy’s Open Architecture
initiative, for example, instituted relevant policy supported by
a model and a corresponding tool [14]). However, through
the ASSIP and the CSWAs, the Army has leapt ahead with
a comprehensive strategy for software architecture that ad-
dresses not just technical issues but also these non-technical
aspects, which are essential to institutionalization and achiev-
ing maximum benefit from software architecture practices.
The goal now is to help ensure that the new Army CSWAs
are positioned for success. To that end, the FY10 ASSIP
plan focuses on supporting them with continued training and
awareness opportunities as well as technical assistance.

22 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Stephen Blanchette, Jr. is Chief Engi-
neer for Army Programs at SEI. He has
more than 23 years experience in the
defense industry as a software engineer
and manager. He is an associate fellow
of the American Institute of Aeronautics
and Astronautics and a senior mem-
ber of the Institute of Electrical and
Electronics Engineers. Mr. Blanchette
earned a BS in Computer Science from
Embry-Riddle Aeronautical University
and an MA in Diplomacy from Norwich
University.
E-mail: sblanche@sei.cmu.edu

John Bergey is a senior member of
the technical staff at SEI, specializing
in transitioning SEI product line and
architecture-centric practices (e.g.,
Quality Attribute Workshop, Architecture
Tradeoff Analysis Method®) into acquisi-
tion practice across the Armed Services.
Prior to joining SEI, he served over 25
years as a software division manager
with the U.S. Navy. Mr. Bergey is a
graduate of Pennsylvania State Univer-
sity and the University of Michigan.
E-mail: jkb@sei.cmu.edu

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213

In working with the CSWAs to develop execution plans,
one non-technical theme recurs: How can a CSWA direct and
influence within organizational constraints? Since the CSWAs
exercise no direct authority over the projects within their
respective PEO portfolios, the question is a crucial one. As a
solution, most CSWAs are taking a relationship-building ap-
proach, teaming with PMO software architects and engineers
to work on problems collaboratively. In so doing, they will
be able to leverage early adopters of software architecture
practices to achieve initial successes and build publicity within
their organizations. In addition, some CSWAs are seeking for-
mal endorsement from their PEOs or Chief System Engineers
as a means of putting more weight behind their objectives.

From a technical perspective, feedback from the CSWAs
indicated some challenges. One challenge is using software
architecture to help understand, validate, and improve soft-
ware cost estimation. Intuitively, a better understanding of a
software architecture should lead to a better understanding of
the software to be built, which in turn should lead to a better
estimate of software cost. However, CSWAs need tools and
methods to formalize the relationship between architecture
and cost estimation. Another challenge is developing a stan-
dard means of determining appropriate technology readiness
levels (TRLs) for software, and determining which phases of
the acquisition lifecycle require which software TRLs.

Overall, the positioning of the CSWAs at the PEO level
is advantageous in that it enables them to take a portfolio
perspective on such important issues, as well as on architec-
ture sub-specialties such as data architecture and security
architecture, instead of developing solutions project by
project. Data and security architectures, particularly, are vital
for implementing robust and reliable networked solutions for
the warfighter, and such solutions are becoming increasingly
commonplace. Further, and perhaps more importantly, the
CSWAs are able to collaborate with each other through the
ASSIP forum to address these software architecture matters
at the system of systems level, which will facilitate the devel-
opment of truly interoperable capabilities for a modernized
Army and for joint and coalition forces.

Summary
The creation of a Chief Software Architect role in each

PEO has been a significant step in the Army’s efforts to insti-
tutionalize architecture-centric practices in its software-reliant
system acquisition programs. Through the ASSIP, the Army
has focused on developing the software architecture skills of
its acquisition workforce and building awareness of architec-
ture-centric practices among its leadership. The CSWAs can
leverage the cadre of software architecture professionals and
qualified ATAM evaluators to realize the benefits of architec-
ture-centric practices across the Army’s acquisition projects
and set the standard for improvement across the DoD.

The ASSIP continues to support the CSWAs as they work
to establish and champion architecture-centric practices
within their PEOs.

ABOUT THE AUTHORS

CrossTalk—Nov/Dec 2010 23

ARCHITECTURE TODAy

1. Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice,
 (2nd ed.). Boston: Addison-Wesley, 2003.
2. Defense Science Board Task Force. “Acquiring Defense Software
 Commercially.” June 1994. 25 December 2009 <http://www.acq.osd.mil/dsb/
 reports/commrecialdefensesoftware.pdf>.
3. ---. “Defense Software.” November 2000. 25 December 2009
 <http://www.acq.osd.mil/dsb/reports/defensesoftware.pdf>.
4. Anderson, William, et al. Army workshop on lessons learned from software
 upgrade programs (CMU/SEI-2001-SR-021). Pittsburgh, PA: Software
 Engineering Institute, Carnegie Mellon University, 2001.
5. Government Accountability Office. Defense Business Transformation,
 Sustaining Progress Requires Continuity of Leadership and an Integrated
 Approach (GAO-08-462T). Washington: Government Accountability Office, 2008.
6. Dvorak, Daniel L. “NASA Study on Flight Software Complexity.” 2009.
7. Charette, Robert, John McGarry and Kristen Baldwin. Tri-service Assessment
 Initiative Phase 2 Systemic Analysis Results. January 2003.
8. Bass, Len, Robert Nord and William G Wood. “Risk Themes from ATAM Data:
 Preliminary Results.” April 2006. 25 December 2005
 <http://www.sei.cmu.edu/library/abstracts/presentations/basssaturn.cfm>.
9. Kasunic, Mark. Army Strategic Software Improvement Program (ASSIP)
 Survey of Army Acquisition Managers (CMU/SEI-2004-TR-003). Pittsburgh,
 PA: Software Engineering Institute/Carnegie Mellon University, 2004.
10. Keeler, Kristi L. U.S. Army Acquisition – The Program Office Perspective
 (CMU/SEI-2005-SR-014). Pittsburgh, PA: Software Engineering Institute/
 Carnegie Mellon University, 2005.
11. Blanchette, Jr., Stephen. U.S. Army Acquisition – the Program Executive
 Officer Perspective (CMU/SEI-2005-SR-002). Pittsburgh, PA: Software
 Engineering Institute/Carnegie Mellon University, 2005.
12. Nord, Robert L., John Bergey, Stephen Blanchette, Jr., and Mark Klein.
 Impact of Army Architecture Evaluations (CMU/SEI-2009-SR-007). Pittsburgh,
 PA: Software Engineering Instittue/Carnegie Mellon University, 2009.

1. DoD photo By Staff Sgt. Aaron Allmon, U.S. Air Force. (Released). Retrieved
 12/23/2009 from <http://www.defense.gov/dodcmsshare/newsphoto/2006-
 02/060203-F-7823A-008.jpg>.
2. Interested readers will find additional information about the SEI software
 architecture curriculum on the SEI website: <http://www.sei.cmu.edu/train
 ing/find/architecture.cfm>.
3. Three certificates, Software Architecture Professional, ATAM Evaluator,
 and ATAM Lead Evaluator, are available to students who complete the
 required courses. Beginning in 2009, individuals seeking one of these
 certificates were required to pass a validation exam in addition to
 completing the coursework.
4. Data for PEO Missiles and Space include its predecessor organizations PEO
 Tactical Missiles and PEO Air Space and Missile Defense; PEO Integration,
 created in mid-2009, is not represented in the data.
5. PEOs and software centers are shown in random order.
6. In addition to Army personnel, 62 representatives from other services and
 support contractors have been trained through the conclusion of FY09.
7. In addition to the Army PEOs noted in the list, the Joint PEO for the Joint
 Tactical Radio System (JTRS), currently transitioning from the Navy to the
 Army, also will participate.
8. Examples of such standards are International Standards Organization/
 International Electrotechnical Commission (ISO/ IEC) standards 15288 for
 system engineering and 12207 for software development.

13. Office of the DoD CIO. White Paper Phase I: A Competency Framework for
 the DoD Architect. Washington: Department of Defense, 2008.
14. Shannon, Jim. “Naval Enterprise Open Architecture: What Program
 Managers Need to Know.” January 2006.

REFERENCES REFERENCES (continued)

NOTES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

People Solutions to Software Problems
May/June 2011

Submission Deadline: December 10, 2010

DoD Gaming and Virtual World Applications
July/August 2011

Submission Deadline: February 11, 2011

Protecting Against Predatory Practices
September/October 2011

Submission Deadline: April 8, 2011

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

24 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Introduction
 SOA is becoming increasingly important to, and en-

trenched in, the DoD and IC for military and intelligence op-
erations, including initiatives such as Net-Centric Enterprise
Services (NCES). While SOA includes services and support
for security, such as access control, these initiatives have
largely concentrated only on providing security within do-
mains,1 not across them. Simultaneously, CDS2 have begun to
handle the growing requirement to service the need to share
information critical to military operations, disaster response,
national intelligence, and other situations, carefully balancing
the need to share with the traditional need to protect sensitive
or classified information within and across domains.

Michael Atighetchi, Raytheon BBN Technologies
Joseph Loyall, Raytheon BBN Technologies
Jonathan Webb, Raytheon BBN Technologies
Michael J. Mayhew, AFRL/RIEB

Abstract: As both the DoD and the Intelligence Community (IC) are
moving toward service-oriented architecture (SOA), it is important to en-
sure that SOA-based systems can operate and exchange classified infor-
mation across domain boundaries in support of net-centric missions. The
interplay between SOA and cross domain solutions (CDS) raises a num-
ber of challenges that are grounded in the inherent mismatch between
core SOA principles, such as loose coupling, composability, and discov-
erability, and current CDS technologies and certification and accreditation
processes in use today. The Cross Domain Discovery Service (XDDS)
described in this paper provides an architecture and design for extending
service discovery, a core SOA functionality, across domain boundaries.
The resulting services and protocols provide access to service information
across security domains in a secure, guard-agnostic, scalable, and flexible
way that is amenable to certification and accreditation (C&A).

Discovery services play an important role in single domain
SOAs because of the dynamic nature of a service environ-
ment. As services become available, change, or get removed,
applications need to have up-to-date information about the
definition of available services. Management of static depic-
tions of these environments becomes difficult, both within
and across domains, particularly as the number of services
increases. This motivates a requirement for discovery services
across domains that is currently unmet by existing service
discovery solutions, which only work within domains.

Discovery itself is a simple process, as shown in Fig. 1.
A service registers itself with the service discovery service
that is part of an existing service environment. Next, a client
(shown on the left) performs lookup requests on the service
discovery service to find newly registered services. Once the
client has found a suitable service, it proceeds to invoke that
service through a specific invocation mechanism.

Fig. 1. Functional View of the Discovery Process within
a Single Domain

The XDDS described in this paper fills this gap by enabling
dynamic discovery and use of services across a variety of
domains and associated relationships, including hierarchical,
non-hierarchical, and coalition. The resulting services and pro-
tocols provide access to service information across security
domains in a secure, guard-agnostic, scalable, and flexible
way that is amenable to C&A following standard IC and
DoD processes, e.g., DIACAP [1], NIST Special Publication
800-53 [2], or ICD 503 [3]. The XDDS prototype addresses
requirements expected of any new cross domain capability in
an early research and development prototype lifecycle. The
XDDS prototype is:

>> Guard-agnostic, i.e., independent of any specific
 guard implementation.
>> Modular, enabling reuse of existing guards and
 services that have successfully passed C&A
>> Developed, documented, and tested with C&A in mind
 and an explicit goal to provide a body of evidence for
 certification and accreditation processes in later phases.

DoD-Centric Use Case
Current support for net-centric operations is based on iso-

lated deployments of relevant services in individual domains.
Fig. 2 illustrates a NIPRNet and SIPRNet deployment of
the DISA NCES service discovery service, which provides
the ability to register services (in step 1), lookup services

XDDs:
A scalable Guard-Agnostic Cross
Domain Discovery service

CrossTalk—Nov/Dec 2010 25

ARCHITECTURE TODAy

(step 2), and finally invoke services (step 3), but only within a
respective domain. Extending the discovery of services across
domains necessitates introduction of new cross flows for
either disseminating service registrations or lookup requests.
The flows also need to contain filters to ensure that clients
only get access to information they are entitled to, even from
remote domains.

As part of the XDDS effort described in this paper, we
designed and prototyped services and cross domain protocols
that enable Client1 in Fig. 2 to discover and use Service2,
and conversely Client2 to discover and use Service1, if and
only if these interactions are permissible under existing cross
domain data sharing policies.

discovery, and accommodates requirements on message
exchanges in cross domain environments, such as restricted
XML schemas. Our protocol can encapsulate a large number
of variant discovery protocols without significant changes,
minimizing the impact of changes on C&A.

The Global Discovery Service (GDS) is an extended LDA
component that facilitates scalability by introducing hierarchy
through which any number of LDAs can interact. The GDS
maintains information about the domains and how they can
reach one another, enforces policies on cross domain interac-
tions, facilitates proper authentication, and supports anony-
mization of domains.

The Guard Technology Platform (GTP) is a generic inter-
face to existing guards supporting the examination of cross
domain flows represented with the XDDS protocol. Using the
GTP abstraction during development allows XDDS to remain
independent of specific guard and CDS implementations.

Fig. 4 shows the XDDS architecture in more detail. The
LDA is strategically placed between the local service sub-
strate on the left, e.g., an ESB, and the guard, which is located
closest to the cross domain boundary on the right. Interfaces
of the LDA to other components can be categorized into
inside-facing and outside-facing. While the inside-facing
interfaces talk to existing services in the local domain through
adapters, the outside-facing interface interacts with the local
endpoint of the Guard Technology Platform within an existing
CDS gateway such as the Collaboration Gateway [4] or the
Web Service Gateway [5] of the Cross Domain Collaborative
Information Environment [6].

Fig. 2. Current Service Discovery in DoD Enterprise
Environments

Fig. 3. XDDS Architecture

Fig. 4. The LDA and its Interfaces to Local Service Sub-
strates and CDS Gateways

XDDS Architecture
We created an extensible and flexible architecture for cross

domain service discovery and implemented versions of the
following components shown in Fig. 3.

A Local Discovery Agent (LDA) in each domain trans-
parently intercepts lookup and registration requests within
domains and handles routing requests across domains for
performing local discovery, e.g., using Universal Description
Discovery and Integration (UDDI). The LDAs enable transpar-
ent discovery across domain boundaries without requiring
code changes to existing discovery services or clients.

The XDDS message protocol, through which LDAs interact
with one another, is based on two simple generalized com-
munication models, namely referral- and replication-based

For communicating with the local service substrate, the
LDA instantiates service proxies and uses adapters for
supporting a number of different protocols. In Phase I, we
implemented proxies for the discovery and brokering and
implemented adapters for UDDI v2 and HTTP.

For communication with other LDAs through the outside-
facing interface, the LDA uses LDA service proxies. Since the
Phase I prototype only involved two LDAs, we directly linked
the LDA with the GTP endpoint through the Simple Object

26 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Access Protocol (SOAP). The LDA process itself is imple-
mented as a web service and hosted in the Axis2 [7] web
services container. Logging is performed using the Log4J [8]
framework.

The heart of the LDA is its layered protocol stack, with a
brokering protocol at the lowest layer and discovery and iden-
tity management at higher layers. The main purpose of this
stack is to convert messages from the local service substrate,
which may be complex and technology specific, into a core
set of simple messages, which are suited for crossing domain
boundaries. One way to describe the collection of core mes-
sages is via the notion of abstract protocols for discovery,
identity, and brokering. The brokering protocol is responsible
for routing requests through the network of XDDS nodes.
Requests can either be discovery or identity management re-
lated, or originate from a brokering proxy which allows clients
to invoke services in other XDDS-enabled domains. Discovery
is implemented via exchange of simple messages that allow
for registration of local services with XDDS and lookup of
registered services throughout the overlay network of XDDS
nodes. The identity protocol enables an LDA to export a se-
lected set of identity mappings from the local identity service
to other XDDS nodes (such as the GDS).

The LDA contains a Policy Enforcement Point (shown as
PEP in Fig. 4) that intercepts requests and subjects them to
policy evaluation. In future versions of the LDA, we expect to
configure an existing Policy Decision Point with role-based
access control policies that determine what information is
allowed to be passed outbound and received inbound. To
meet the requirement for preventing data leakage between
domains, the policy enforcement of high domains always hap-
pens on the high side, allowing domains to stay in full control
of their data. In addition, low domains implement a second line

of defense by pushing protection requirements closer to the
source of misbehavior in cases of errors or attacks that are
mounted to escalate from low to high domains.

The GDS is built on the same technology platform as the
LDA to provide support for anonymization, identity map-
ping, and LDA synchronization (as displayed in Fig. 5). The
discovery service in a GDS operates at a higher layer in the
discovery hierarchy in that it manages LDA memberships and
allows them to discover each other. LDAs defer to the GDS
for discovery requests that they cannot handle and answer
discovery queries from the GDS. For identity management,
the GDS supports mapping of identities across domains in a
scalable way. It can also store identity relevant meta-informa-
tion about LDAs, such as what identity protocols are support-
ed by an LDA and whether the LDA allows remote verification
of identities. For anonymization, the GDS supports multiple
operational modes, ranging from traditional onion-routing to
support for services that want to disclose only a small subset
of information about themselves and implement “don’t call
us, we’ll call you” policies. The GDS allows XDDS to support
service discovery even in the most restrictive environments
in which the knowledge that a certain domain hosts a certain
service is not permitted to cross domain boundaries.

Fig. 5. The GDS

IMPORTANT sTANDARDs
AND GUIDANCE DOCUMENTs

•	NIST	Special	Publication	800-95,	Guide	to	Secure	
 Web Services, 8/2007
•	MITRE	Technical	Report	MTR080027,	Recommendations	on	the		
 Use of SOAP in a Cross Domain Environment, 2/2008
•	MITRE	Technical	Report	MTR040000092,	Security	Guards	for	
 the Future Web, 9/2004
•	NSA	Report	XML	Schema	Guidance	for	Cross	Domain	Security		
 Policy Enforcement, 07/2006
•	Intelligence	Community	Standard	for	Information	Security	Marking		
 Metadata (IC ISM), ICS 2007-500-2, Version 2, April 2004
•	SOAP	1.1	(W3C	Note	08	May	2000)	and	SOAP	1.2	
 (W3C Recommendation 27 April 2007)
•	WSDL	1.1	Specification	(W3C	TR	Note	14	March	2001)
•	OASIS	UDDI	Technical	Note	Using	WSDL	in	a	UDDI	Registry,	
 Version 2.0.2
•	OASIS	UDDI	V2	specification

Cross Domain Service Discovery In Action
To ensure feasibility of the XDDS architecture and design

and construct a body of evidence for later C&A activities, we
implemented a proof-of-concept prototype during Phase I
based on the jUDDI open-source server [9].

We started by constructing a baseline scenario for intra-
domain discovery of Web Services Description Language
(WSDL)-described web services following the WSDL in
UDDI OASIS recommendation [10]. We then proceeded to
implement referral-based discovery across two domains.
Key components of the prototype include an implementation
of the XDDS protocol specification together with a set of
configurable transformations on UDDI and WSDL documents
necessary for cross domain discovery.

The set of transformations, implemented using XSLT, includes
scripts to change service end point information, e.g., for making
cross domain service calls via existing cross domain web service
invocation substrates, as well as to restrict information sharing
due to security restrictions, e.g., by redacting UDDI operator
identities. The prototype allows flexible control over content and
location of transformations applied to the message stream and
also rejects messages that do not conform to expectations, e.g.,
by analyzing sequence numbers to prevent replay attacks.

CrossTalk—Nov/Dec 2010 27

ARCHITECTURE TODAy

Fig. 6 shows a visualization of the multi-step cross domain
discovery process generated from live outputs and logs of
participating components. The domain boundary is shown in
the center and the GTP is represented through a dark gray
box. LDA components are further divided into an intra-net
resident LDA process, e.g., LDA A, and a process resident in
a Demilitarized Zone3 (DMZ), e.g., LDA A DMZ. The lookup
client is represented by an oval on the left, while the UDDI
server is represented by an orange box labeled “jUDDI B”
on the right. Fig. 6 shows the sequence of XML message
exchanges between various components during a UDDI
find_tModel request4 together with key transformations on
the resulting XDDS messages called out via T1 through T4.

Certification and Accreditation of
Different Configurations

C&A of CDSs is of significant cost and solutions that do
not account for the specifics of cross domain environments
will face significant barriers during accreditation. This is
even more true for service discovery due to a high degree of
technology diversity and proliferation of evolving discovery
standards. To address these issues, XDDS decouples existing
discovery technologies found locally in a domain from the
messages that cross the domain boundary.

The design of the Phase I prototype confines most of the
complexity to the protocol adapter, specialized for UDDI in this

Fig. 6. Proof-of-Concept Prototype Demonstration

case, and the discovery service proxy while allowing the LDA/
GDS components to exchange a small set of core XDDS XML
messages within a narrowly defined message format over the
domain boundary (the right side of Fig. 7). Message exchanges
across domain boundaries are represented via two generalized
communication models, referral and replication (described in
more detail later in this section), that cover a wide variety of
discovery protocols through adapters.

Fig. 7. Separation of LDA Components along Trust Boundaries

28 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

The scope of C&A in this effort was to construct an
initial body of evidence that can be used later as the basis
for security arguments for a real C&A activity. The various
design tradeoffs, use cases, and XML message exchanges
and transformations shown through the proof-of-concept
prototype all feed into construction of this body of evidence.
In addition, we developed the design and proof-of-concept
prototype to be consistent with a number of important com-
munity documents and standards.

Functional Use Cases and Generalized
Communication Models

XDDS supports two basic discovery patterns: referral, where
a client request is transferred from a local proxy to a discovery
service instance holding the relevant service registration, and
replication, where service registrations are copied to local dis-
covery service instances to satisfy local discovery requests.

Basic Discovery Interaction Patterns
The Phase I proof-of-concept prototype supports referral-

based discovery, in which the LDA components disseminate
lookup requests and corresponding responses across domain
boundaries, as shown in Fig. 8.

The sequence of events is as follows:

1) A service in Domain 2 makes a registration request
with its local LDA 2. Service description information is only
persisted locally.

2) A client in Domain 1 makes a lookup request with its
local LDA 1.

3, 4) The LDA 1 forwards the request to LDA 2 in the other
domain and receives the response back from LDA 2, which
it in turn returns to the client. The transfer of cross domain
requests and response is mediated by the GTP.

Fig. 9 depicts the replication-based discovery configuration,
and the sequence of steps is as follows:

1) A service in Domain 2 makes a registration request with
its local LDA 2.

2, 3) The LDA 2 makes a replication request through the
GTP to an affiliated LDA in another domain. Transfer is medi-
ated by the GTP.

4) The replication request is received by the affiliated LDA
1 and any local client requests are serviced by the LDA 1
local to the client C.

Note that a GDS (in its own domain) may be inserted into
the communication path to reduce or eliminate the need for
multiple point-to-point connections. XDDS provides mixed

Fig. 8. Referral-based Discovery

Fig. 9. Replication-based Discovery

operations in which one LDA is configured to replicate reg-
istrations to the GDS, while another LDA uses referrals for
lookup operations. In both configurations, XDDS carries all
cross domain message exchanges over a generic discovery
service protocol.

There are two key distinctions between the referral and
replication models:

For referral, the information traverses the domain boundary
at the time the lookup request is made by the recipient client.
For replication, the information traverses the domain boundary
at the time the service registration is performed.

In the referral model, the service description is not in the
persistent storage of the discovery service element of the re-
questing domain. The replication model has a persistent copy
of the discovery data in all replication domains.

The differences have important implications on security as-
pects of deployments. For example, it may be more appropri-
ate to replicate service registrations from low to high domains.
In this configuration, lookup requests performed in the high
domain are handled locally, reducing the amount of risk for
interference or covert channels.

CrossTalk—Nov/Dec 2010 29

ARCHITECTURE TODAy

Fig. 10. Example XDDS message

XDDS Protocol Specification
The XDDS message protocol is an XML-based message

specification that describes the syntax of messages passed
between LDAs through the GTP. The protocol is consistent
with open standards, e.g., XML, UDDI, Security Assertion
Markup Language, WS-Security, XML Signature, and SOAP.
The protocol represents XML message exchanges through
two basic message forms—XDDS requests (example shown
in Fig. 10) and XDDS responses. By default, all requests
generate responses and generic acknowledgement respons-
es are returned in error cases instead of error responses.
Messages include control information, such as LDA identi-
ties used for routing purposes, classification markings, and
message integrity and provenance trails that allow enforce-
ment of integrity and anti-spoofing.

To simplify messaging formats, the protocol uses the same
message types during referral and replication modes and
treats the replication request analogous to a query response
in the referral mode. Furthermore, application specific dis-
covery protocols, e.g., UDDI and HTTP, are encapsulated in
the XDDS messages in restricted form, allowing the same
XDDS message structure to be used with multiple application
specific protocols.

The XDDS protocol allows expression of restrictions on
message exchanges through both XML schema and XSLT
restrictions. The schema restrictions include sanitization of
the input stream through removal of non-printing characters
and any characters outside the range 040 to 176. In addition,

we use white space normalization and disallow any CDATA,
Base64, or other similar binary encodings. The protocol han-
dlers further restrict attribute values to enumeration constants
or highly constrained value sets and disallow mixed element
content. Extensible Stylesheet Language Transformations
(XSLT) restrictions are generated automatically from configu-
ration data and tie allowable message exchanges to accred-
ited cross domain flows. For instance, the XDDS protocol
handlers use XSLT script to check message ordering and
detect message replay scenarios.

Summary and Next Steps
The XDDS Phase I project was a successful research ef-

fort that produced significant improvements in technology in
a short amount of time. The technology innovations and the
XDDS prototype demonstrated in this project are founda-
tional results enabling a necessary capability, previously
unavailable, if SOA is to be realizable in DoD and Intelligence
Community environments, namely the ability to discover and
broker services across domain boundaries in a scalable, safe,
and certifiable manner.

In summary, we designed a guard-agnostic architecture
for cross domain service discovery based on the principles
of modularity, interoperability, transparency, scalability, and
security, and produced technical designs for its major com-
ponents, namely the LDA, the GDS, and the XDDS protocol
specification. In addition, we developed use cases involv-
ing generalized communication models, namely referral-
based and replication-based discovery, advanced discovery
capabilities, including hierarchical and anonymous discovery
processes, and assured discovery capabilities through au-
thentication and authorization, message protection through
signatures, and traffic restrictions and normalization. Finally,
we successfully demonstrated cross domain discovery via a
proof-of-concept implementation of one specific configura-
tion supported by the design.

Our plans for future work include expansion of the existing
proof-of-concept capabilities by a) adding replication-based
discovery and initial authentication, authorization, and service
invocation capabilities, b) developing the first version of the
GDS component to enable hierarchical discovery and en-
hance the replication and referral-based discovery capabilities
to support message integrity and pedigree, and c) implement-
ing anonymization and providing enhanced management and
generation of variant configurations.

30 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

1. A Domain represents one or more computers under the same specific
 security policy.
2. A Cross Domain Solution is an approved trusted data flow implemented between
 two or more domains.
3. A DMZ is a physical or logical subnetwork that contains and exposes an
 organization’s external services to a larger untrusted network, e.g., the Internet.
4 . The find_TModel UDDI request is used to retrieve summary information about
 UDDI tModel elements describing a service.

The authors would like to acknowledge the support and
collaboration of the U.S. Air Force Research Laboratory
(AFRL) Information Directorate. This material is based
upon work supported by the AFRL under Contract No.
FA8750-09-C-0012.

ABOUT THE AUTHORS

NOTES

ACKNOWLEDGMENTS

Michael Atighetchi is a scientist at BBN’s Information
and Knowledge Technologies business unit. His research
interests include cross domain information sharing, security
and survivability architectures, and middleware technologies.
Mr. Atighetchi has published more than 35 technical papers
in peer-reviewed journals and conferences, and is a senior
member of the IEEE. He holds a master’s degree in computer
science from the University of Massachusetts at Amherst,
and a master’s degree in IT from the University of Stuttgart,
Germany.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-1679
Fax: (617) 873-4328
E-mail: matighet@bbn.com

Dr. Joseph Loyall is a Principal Scientist at Raytheon BBN
Technologies. He has been the Principal Investigator on DAR-
PA and USAF AFRL R&D projects in the areas of information
management, distributed middleware, adaptive applications,
and quality of service. He is the author of over 75 published
papers; was the program committee co-chair for the Distrib-
uted Objects and Applications conference (2002, 2005);
and has been an invited speaker at several conferences and
workshops. He has a Ph.D. from the University of Illinois.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-4679
Fax: (617) 873-4328
E-mail: jloyall@bbn.com

Jonathan Webb is an engineer in BBN’s Information and
Knowledge Technologies business unit. Over 20 years at
BBN, Mr. Webb has been involved in a wide range of soft-
ware development projects including simulation of dynamic
systems, web-based data management systems, middleware
for information management, and cross domain information
sharing. Mr. Webb has a master’s degree in aeronautics and
astronautics from the Massachusetts Institute of Technology.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3321
Fax: (617) 873-4328
E-mail: jwebb@bbn.com

Michael J. Mayhew has been with
AFRL for the past 13 years, 6 of those
years as a Federal Civilian. As the
Program Manager of the Cross-Domain
Innovation & Science group, Michael
leads a team of research engineers
in finding and developing new cross
domain technologies and maturing

those technologies for integration within existing cross do-
main products. Michael is a frequent presenter at worldwide
program and technical conferences each year and is recog-
nized as a subject matter expert in the area of cross domain
technology. In addition to his CDIS role, Michael also serves
as the Science & Technology Liaison between his group and
the DoDIIS Cross Domain Management Office. Michael’s
long career included Government Lead Engineer on the ISSE
Guard 3.5 project and Senior Computer Analyst with Northrop
Grumman Government Systems. Michael received an M.S.
with Magna Cum Laude in Computer Science from SUNY IT.
Michael is certified ACQ Level 1 Certified Program Manager
and ACQ Level 3 Certified SPRD&E. Michael is a member of
the Cross Domain Solutions Working Group, and the Armed
Forces Communications and Electronics Association, Erie
Canal Chapter.

AFRL/RIEB
525 Brooks Road
Rome, NY 13441-4505
Group Tel: (315) 330-7380
Tel: (315) 330-2898 DSN: 587-2898
Fax: (315) 330-3913 DSN: 587-3913
E-Mail: michael.mayhew@rl.af.mil

CrossTalk—Nov/Dec 2010 31

ARCHITECTURE TODAY

1. DoD. (2007) Signed DoDI 8510.01 - Department of Defense Information
 Assurance Certification and Accreditation Process (DIACAP) Instruction.
 <http://www.dtic.mil/whs/directives/corres/pdf/851001p.pdf>.
2. NIST. (2009, August) Special Publication 800-53.
 <http://csrc.nist.gov/publications/PubsSPs.html>.
3. Director of National Intelligence (DNI) Directive, Intelligence Community
 Directive (ICD) 503, 2008.
4. Boyd Fletcher, USJFCOM J9/SPAWAR, “XMPP & Cross Domain Collaborative
 Information Environment (CDCIE),” in Overview For Net-Ready Sensors
 Summer Workshop Collaboration Gateway.
5. Chris Roberts, Kurt Risser, Boyd Fletcher, “The Design and Implementation
 of a Guard Installation and Administration Framework,” in SE-Linux
 Symposium, 2007.

REFERENCES
6. JFCOM. (2009, Nov.) Cross Domain Collaborative Information Environment.
 [Online]. <http://www.jfcom.mil/about/fact_cdcie.html>.
7. Apache Software Foundation. (2010, January) Apache2 Homepage.
 [Online]. <http://ws.apache.org/axis2/>.
8. Apache Software Foundation. (2010, January) Log4j Homepage.
 [Online]. <http://logging.apache.org/log4j/1.2/index.html>.
9. Alan Vinh and Phil Bonderud. (2008, Dec.) jUDDI.
 [Online]. <http://ws.apache.org/juddi/>.
10. OASIS UDDI Spec TC. (2004, June) Using WSDL in a UDDI
 Registry - Version 2.0.2 - Technical Note. [Online].
 <http://www.oasis-open.org/committees/uddi-spec/doc/
 tn/uddi-spec-tc-tn-wsdl-v2.htm>.

https://buildsecurityin.us-cert.gov
https://buildsecurityin.us-cert.gov/swa

32 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Introduction
Metcalf’s Law tells us that the value of a telecommunications

network is proportional to the square of the number of users of
the system [1]. Service Oriented Architectures (SOAs) capital-
ize on this phenomenon. Through a set of standard interfaces,
services (i.e., software-based capabilities) are made available
to any consumer willing to follow the structural and behavioral
rules for consumption. The loose coupling provided by standard
interfaces enables this plug-and-play capability. Taking advan-
tage of such a notion promises great gains in efficiency for
anyone looking to create interoperable, scalable applications
that share information across boundaries.

According to Gartner, SOA will be used in more than 80%
of mission-critical operational applications and business
processes by the year 2010 [2]. Analysis of the literature
indicates that the SOA vision leads to a belief of implementa-
tion efficiencies and cost savings of epic proportions. As the
U.S. DoD moves forward with its vision of highly distributed
net-centric capabilities in current and future DoD programs,
it will be difficult to deploy, maintain, and evolve capabilities
without the benefit that SOA brings to the table.

James T. Hennig, U.S. Army RDECOM CERDEC C2D
Arlene F. Minkiewicz, PRICE Systems LLC

SOA offers the DoD the promise of cost savings, data
sharing, interoperability and increasingly agile operations. But,
as with all things that progress in society, there are obstacles.
The DoD depends on outside contractors to develop much of
its needed capabilities. These contracts may involve delivering
a specific platform, such as a quantity of F-22s or F-35s, or
they may require the delivery of a set of capabilities to satisfy
one or many missions such as Future Combat Systems or
Distributed Common Ground Systems. The contractors who
deliver these capabilities are, not surprisingly, doing so for a
profit. With this profit as a motivator, contractors will be un-
likely to choose reusing a network-available capability when
they can be paid to develop the solution themselves. Incen-
tives are needed to make the existing capability a desirable
option for the contractor.

 In addition to technical challenges associated with deploy-
ing solutions that take advantage of service-oriented technol-
ogy, there are cultural and organizational challenges that the
DoD is likely to encounter. Contractors, who are being paid
to deliver a solution or a capability to a specific customer, are
unlikely to think beyond their contractual obligations. When
developing a service, a contractor will be uninspired to think
about the bigger picture, especially in situations where there
is schedule pressure or cost containment issues (a frequent
occurrence with many DoD software projects).

This paper describes Service Oriented Architecture and the
potential value this technology could bring to the DoD. It then
addresses the cultural and organizational aspects associated
with getting quality SOA solutions within a contract develop-
ment scenario. Finally, some suggestions are presented for
establishing incentives to encourage SOA-friendly behavior
within such a scenario.

What is a Service Oriented Architecture?
Service orientation is not a new concept. We are all provid-

ers and consumers of services. If I want power for my toaster,
I put the plug into the wall socket and power flows. I require
no knowledge of how the power gets from the wall socket
into the toaster or what substation generates the power. As a
service consumer, all I need is the correct interface (my plug)
to get access to the electricity, and a Service Level Agree-
ment with the service provider, in this case the electric com-
pany, which indicates my willingness to pay for the service.
And throughout the U.S., anyone with that same interface
and an agreement with their local electric company can get
access to power in the same way.

In the context of software, a Service Oriented Architec-
ture is a paradigm that offers software service providers the
potential to share their software solutions with consumers
using the same basic business model that utilities have used
successfully for years. Service consumers are then able to
reuse capabilities developed by others rather than having to
develop that capability themselves. An SOA is an architectural

Abstract. Service Oriented Architectures (SOA) offers the DoD the
promise of cost savings, data sharing, interoperability, and increasingly
agile operations. As with all things that progress in society, there are
obstacles. One of the challenges faced by the DoD involves molding
current acquisition processes and cultures to be SOA friendly. This
paper discusses these challenges and presents some thoughts on
how they might be addressed.

service
Incentive:
Towards an SOA-Friendly
Acquisition Process

CrossTalk—Nov/Dec 2010 33

ARCHITECTURE TODAy

style that allows for distribution of capabilities that need not
all be supplied or owned by the same organization or entity,
with the same notion of transparency that utilities offer elec-
tric consumers. From the DoD’s perspective, SOA offers the
opportunity to create solutions that get the right information
to the right places at the right time.

The Value of SOA
SOA results in two distinct categories of software: services

(for example web services published in a global directory) that
are published and made available by service providers, and
software that consumes these services to create capabili-
ties. These software services can be further characterized as
either infrastructure services required by many software ap-
plications (such as security, messaging, and routing), or busi-
ness services that are specific to business requirements or
specific missions. Compare this to more traditional software
paradigms where the business or mission-specific capabilities
are closely meshed with software that supports the infrastruc-
ture of the application. Separating the infrastructure from the
business rules makes it possible to respond quickly as busi-
ness rules or mission requirements change. SOA creates an
environment where the business drives IT requirements rather
than being constrained by them..

By definition, SOA services are to be reusable. In an organi-
zation as large as the DoD, the existence of reusable services
creates many opportunities to reduce redundancy and increase
efficiency. From a mission effectiveness perspective, there are
many areas where SOA could add value. SOA promises to
increase interoperability within and among the services through
discoverable standardized service contracts. Through reusable
data services, information can be shared across the enterprise
increasing dissemination and knowledge transfer. Readiness
can be improved through efficiencies gained in information
access. Additionally, widespread SOA throughout the DoD will
increase organizational ability to deal with rapid change.

The SOA Acquisition Challenge
It’s not too hard to see that SOA may add value to the DoD

but there are certainly some technological challenges that
must be overcome. Challenges aren’t going to stop smart
software professionals from developing and delivering quality
software to the DoD. There are, however, some cultural and
organizational challenges that may stand in the way of suc-
cessful transition to SOA.

Imagine a contractor who has been awarded the contract
(hypothetical) to develop a capability to store food allergy
data for all of the Army’s soldiers and disseminate this infor-
mation to all locations where the soldiers are fed—including
military bases, theaters of operation, military hospitals, etc.
While developing the data services to process this informa-
tion, the contractor’s software engineering team realizes
that developing a more generic service to handle all types

of allergies—including food, drug, bee stings, etc.—would be
a more valuable service to the DoD as a whole. At the same
time, the customer program team realizes that this more
useful service will take more time and resources to develop;
time and resources not currently in the budget. The contrac-
tor’s customer program team abandons good SOA practices
(facilitating a more widely useable service) to create a point
solution to the problem because there is no organizational
means to quickly adjust the schedule and budget.

This is, of course, a very simplified example—many opportu-
nities will arise that could provide useful solutions throughout
the DoD that may be overlooked because funding is targeted
at specific capabilities. A project is not service-oriented just
because capabilities are delivered using sharable services. A
project is not truly service-oriented unless it takes advantage
of existing services where available and develops needed
services taking into account the bigger picture of uses be-
yond the current need. DoD contracts focus on the particular
capability being contracted for and make no provisions for
delivering beyond that. Contractors are paid for the capability
they deliver, making it desirable to maximize capability devel-
oped for a specific contract. This is not to suggest that the
contractors for particular projects should be responsible for
the creation and maintenance of an SOA framework suitable
to meet DoD requirements. Contractors working on specific
projects should intend to take advantage of existing DoD
SOA frameworks. Contractors however, should be encour-
aged to embrace SOA for their projects by leveraging the use
of services existing within that framework and considering the
greater good when developing new services to be made avail-
able through that framework.

In this way, SOA creates a paradox for the DoD and its
contractors. The DoD has specific capabilities that it knows
it needs and it has a time frame and budget within which it
expects to meet those needs. Within the DoD, the “sponsor”
of a specific capability will outsource the fulfillment of this
capability to a community of engineers, designers and other
software development personnel. Neither the sponsor nor the
contractor is rewarded or incentivized to provide a service-
based solution, which meets a greater good and provides
additional enterprise benefit for the whole of the DoD. There
are limited explicit incentives to take advantage of existing
services when possible that meet program needs. The DoD
has unwittingly tied the hands of these very talented profes-
sionals by not providing a mechanism to encourage a specific
focus on enterprise benefit.

Cultural and organizational changes are necessary if the
DoD is going to be successful with full-scale SOA solutions.
Contractors and project sponsors should be encouraged
through policy changes and funding incentives to think be-
yond the current problem. Both the contractor and customer
sponsor need to be incentivized to develop services that will
solve problems the DoD might not yet realize that they have—

34 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

or issues that might not be relevant to the contracting agency
but that could have significant impact on another agency.
Suppose there was a process through which contractors
can come back to the table during the planning and require-
ments phases of a project with suggestions for a better, more
far-reaching SOA solution than that which was originally
contracted. Figure 1 depicts a notional process.

Contractors should be given opportunities to identify en-
hanced SOA solutions to the contracting agency. This oppor-
tunity could be presented to the DoD sponsors, outlining addi-
tional costs as well as added value of the enhanced solution.
Additionally the contractor should present the cost savings
anticipated if the enhanced service is provided in the context
of the current program versus having to do it separately as
a new program or upgrade. Once the DoD sponsor validates
the new solution, the improvements would be passed on to

the Functional Capabilities Board for approval. Ideally, the
contractor and the DoD sponsor would be given the opportu-
nity through this mechanism to present suggestions not only
to the contracting agency, but to other branches of the DoD
that might benefit from such a service. Upon validation of the
value added by the new service, a portion of the cost savings
incurred could then be provided as both an award fee incen-
tive to the contractor and a budget increase to the sponsor.

There should also be incentives for contractors to include
reuse of existing services as part of their bid for the contract.
Contractors should be encouraged to work with the contract-
ing agencies and a Functional Capabilities Board to identify
services existing in either the DoD or the public domain
that would be suitable in the context of the current contract.
Contract awards should include provisions for a “finder’s fee”
based on the anticipated savings to the contracting agency,
taking into consideration not only reduced costs for the cur-
rent program but also recognizing the value in non-duplication
of services.

Conclusion
SOA is likely here to stay. It offers great opportunities for

the Services and the entire DoD to develop forward-thinking
synergistic solutions that transcend current operational
requirements. In order for this to happen, the DoD needs to
find ways to encourage contractors and DoD sponsors to
embrace SOA beyond just the “letter of the law” to the point
where they are architecting solutions designed to take ad-
vantage of the benefits and cost savings possible with SOA.
On the other hand, contractors need to be proactive in their
approach to providing quality SOA solutions to the DoD that
consider requirements beyond a current contract and look to
how contract solutions can add value beyond that contract to
other applications across the DoD enterprise.

As SOA evolves within the DoD, acquisition culture needs
to shift to enable collaborative behavior that will provide
solution synergy. The DoD will benefit by getting the most
value out of services contracted for particular programs. The
contractors benefit as their proactive behavior in defining
opportunities makes them a vital part of the DoD’s SOA plan-
ning process, bringing them to the table as the DoD works to
create SOA Advisory Boards and SOA Centers of Excellence.

Figure 1

CrossTalk—Nov/Dec 2010 35

ARCHITECTURE TODAy

James T. Hennig is the Chief Architect for the Battle Com-
mand Division of the U.S. Army Research Development and
Engineering Command, Communication, Electronics, Re-
search, Development and Engineering Center, Command and
Control Directorate. He has a B.S. in Mechanical Engineering,
an M.S. in Software Engineering and is currently working on
a Ph.D. in Systems Engineering and Enterprise Systems. He
has 20 years experience building highly complex distributed
computing systems.

732-427-3088
James.Hennig@us.Army.Mil

Arlene Minkiewicz is the Chief Scientist at PRICE Systems,
LLC. In this role, she leads the cost research activity for the en-
tire suite of cost estimating products that PRICE provides. Ms.
Minkiewicz has more than 25 years of experience with PRICE
building cost models. She has a B.S. in Electrical Engineering
and an M.S. in Computer Science. Minkiewicz has published
many articles on software measurement and estimation and
frequently presents her research at industry forums.

856-608-7222 (work)
856-630-9408 (cell)
17000 Commerce Parkway, Suite A
Mt. Laurel, NJ 08054
arlene.minkiewicz@pricesystems.com

1. McGovern, J, et. al., Java Based Web Applications, Elsevier Science, 2003.
2. Web Services and Service-Oriented Architectures
 <http://www.service-architecture.com>.
3. Chopra, D., “Security for SOA and Web Services”, Dec 2004, available at
 <https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/
 uuid/512de490-0201-0010-ffb4-8bd1620b2386>.
4. NCES, “NCES Security Server”, Defense Online, July 2006, available at
 <http://ges.dod.mil/ServiceSecurity.htm>.
5. Lewis, G., et.al., “SMART : The Service-Oriented Migration and Reuse
 Technique”, September 2005, available from the SEI at
 <http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05tn029.pdf>.
6. Starret, E., “Software Acquisition in the Army”, CrossTalk, May 2007.
7. Zenishek, Lt. Col S., Usechak, Dr. D., “Net-Centric Warfare and its Impact on
 System-Of-Systems”, Defense Acquisition Review Journal, 2005, available at
 <http://www.dau.mil/pubs/arq/2005arq/2005arq-39/Zenishek.pdf>.

ABOUT THE AUTHORS REFERENCES

FURTHER READING

1. Wenzel, G. & Yuan, E. Actionable Intelligence for the Warfighter — Achieving
 Army ISR Net-Centricity Through a Service Oriented Architecture available at
 <http://asc.army.mil/docs/pubs/alt/current/issue/articles/14_Actionable_
 Intelligence_for_the_Warfighter_--_Achieving_Army_ISR_Net-Centricity_
 Through_a_Service-Oriented_Architecture_(SOA)_200704.pdf>.
2. Gartner report available at <http://www.gartner.com/it/page.jsp?id=503864>.

36 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

Two projects now underway have the potential to signifi-
cantly improve the worldwide software engineering workforce.
The Integrated Software and Systems Engineering Curricu-
lum Project (ISSEC) recently published Graduate Software
Engineering 2009 (GSwE2009): Curriculum Guidelines for
Graduate Degree Programs in Software Engineering. Initially
sponsored by DoD with over 40 authors, the IEEE Computer
Society and the Association for Computing Machinery now
maintain and evolve GSwE2009 with support from the Inter-
national Council on Systems Engineering (INCOSE). The sec-
ond project, Body of Knowledge and Curriculum to Advance
Systems Engineering (BKCASE), is creating two products: a
body of knowledge for systems engineering and guidelines
for a professional master’s degree in systems engineering.
Both the body of knowledge and the reference curriculum will
incorporate software engineering as appropriate, to reflect
the critical importance that software plays in modern systems.
DoD, INCOSE, IEEE Systems Council, and IEEE Computer
Society Educational Activities Board support and participate
in BKCASE. Together, the products of ISSEC and BKCASE
should accelerate the collaboration and potential integration
of the systems and software engineering workforces.

Improvements in the software engineering workforce that
support the DoD and its contractor community depend, in
part, on the strength of community agreements on how to
educate, guide, inform, evaluate, and certify the workforce.
Two projects with broad community involvement are providing
some of those agreements:
1) ISSEC
2) BKCASE

ISSEC Summary
ISSEC was launched by Art Pyster at the Stevens Institute

of Technology (Stevens) in 2007 with DoD sponsorship and
a coalition from academia, industry, government and profes-
sional societies providing authors. In September 2009, its
more than 40 authors published version 1.0 of a reference
curriculum that reflects current development practices and
the greater role of software in today’s systems. The report,
titled Graduate Software Engineering 2009 (GSwE2009):
Curriculum Guidelines for Graduate Degree Programs in
Software Engineering [1], is available at
<http://www.gswe2009.org>. Two companion documents
followed in November 2009, Comparisons of GSwE2009 to
Current Master’s Programs in Software Engineering and Fre-
quently Asked Questions on Implementing GSwE2009. Both
are also available on the GSwE2009 website.

ISSEC continues today, focused on aiding dissemination
and adoption of GSwE2009.

The IEEE Computer Society and the Association for
Computing Machinery (ACM) have recently signed a copy-
right transfer agreement with Stevens to become the owners
and primary sponsors of GSwE2009. The two professional
societies now assume responsibility for evolving and main-
taining the guidelines to the same level that they manage
curriculum guidelines in other disciplines. The International
Council on Systems Engineering is playing a supporting role
in the evolution of GSwE2009. Stevens and a number of the
original author team members maintain purview over the two
companion documents.

BKCASE Summary
BKCASE began in September 2009 under the joint leader-

ship of Art Pyster from Stevens and Dave Olwell from the Na-
val Postgraduate School. As did ISSEC earlier, BKCASE has
enjoyed strong support from both DoD and INCOSE since
the project began. The IEEE Systems Council and the IEEE
Computer Society Educational Activities Board offered their
support for BKCASE in November 2009. As of the writing of
this paper, BKCASE has 45 authors from 10 countries, and is
supported by over a hundred reviewers.
BKCASE will produce two primary products:
1) Systems Engineering Body of Knowledge
 (SEBoK— pronounced “sea” “Bach”)
2) Graduate Reference Curriculum for Systems
 Engineering (GRCSE— pronounced “Gracie”)

In the second half of 2010, BKCASE will publish version
0.25 of both the SEBoK and GRCSE. Version 1.0 will fol-
low sometime in 2012. BKCASE will, quite naturally, turn to
SEBoK for the material that should be included in GRCSE.
Both products will incorporate substantial aspects of software
engineering, which will help bridge the historical gap between
professional software and systems engineers.

Global Workforce
Development Projects
in Software Engineering
Art Pyster, Stevens Institute of Technology
Mark Ardis, Stevens Institute of Technology
Dennis Frailey, Raytheon and Southern Methodist University
David Olwell, Naval Postgraduate School
Alice Squires, Stevens Institute of Technology

CrossTalk—Nov/Dec 2010 37

ARCHITECTURE TODAy

The ISSEC Project
In 1989 the SEI of Carnegie Mellon University published a

landmark report on graduate education in software engineer-
ing [2]. Several universities used the recommendations in
that report to establish their software-engineering degree
programs. Since then, the way software is developed has
changed dramatically, yet little effort has been made to foster
further implementation and update the Software Engineer-
ing Institute’s (SEI) original recommendations for graduate
education in software engineering [2].

In 2007, Kristen Baldwin, then Deputy Director for Soft-
ware Engineering and System Assurance of the Office of
the Under Secretary of Defense Acquisition, Technology
and Logistics, approached Art Pyster of Stevens Institute
regarding the findings of a software industrial base study
that had been conducted at the request of the Office of the
Secretary of Defense. The study reflected that software drives
the performance of almost all major military systems today
and the development phase of any major system typically
involves substantial amounts of software development. The
study found a critical shortage of trained senior-level software
talent required by the complex, software-intensive systems
developed and forecasted by the Department of Defense.

Baldwin and Pyster concluded that a critical long-term
strategy for the DoD was to ensure a strong and relevant
foundation for training and education of senior software talent
through establishment of a reference curriculum that would
represent the fundamentals of software engineering as well
as address the current challenges of scale, complexity, and
criticality. Based on these conclusions, ISSEC began.

ISSEC built GSwE2009 on the SEI curriculum plus those
of other initiatives, such as the Guide to the Software Engi-
neering Body of Knowledge (SWEBOK) [3] and Software
Engineering 2004: Curriculum Guidelines for Undergradu-
ate Degree Programs in Software Engineering [4]. ISSEC
followed an iterative, evolutionary approach in creating the
guidelines, beginning with the formation of a Curriculum
Author Team (CAT). First established in July 2007, the CAT is
a collection of invited experts from industry, government, aca-
demia, and professional associations. CAT membership grew
as GSwE2009 matured. In addition to representatives from
the ACM, IEEE Computer Society, and INCOSE, ISSEC had
the benefit of authors from the Brazilian Computer Society
and the U.S. National Defense Industrial Association Systems
Engineering Division.

Originally, GSwE2009 was known as GSwERC, which
stands for Graduate Software Engineering Reference Cur-
riculum. The CAT released GSwERC 0.25 in February 2008,
GSwERC 0.5 in October 2008, and GSwE2009 1.0 in
September 2009. The software engineering community was
invited to review versions 0.25 and 0.5 to provide the neces-
sary feedback to develop version 1.0. The review of version
0.5 generated more than 800 individual review comments,
which were adjudicated for use in creating version 1.0. The

detailed comments and their adjudication can be found on the
GSwE2009 website.

GSwE2009 Content
GSwE2009 includes the following elements:
>> A set of outcomes to be fulfilled by a student who
 successfully completes a graduate program based
 on the curriculum
>> A set of student skills, knowledge, and experience
 assumed by the curriculum, not intended as entrance
 requirements for a specific program, but as the starting
 point for the curriculum’s outcomes
>> An architectural framework to support implementation
 of the curriculum
>> A description of the fundamental or core skills,
 knowledge, and practice to be taught in the curriculum
 to achieve the outcomes. This is termed a Core Body
 of Knowledge (CBOK) and includes topic areas and
 the depth of understanding a student should achieve

A university considering the creation or modification of a
graduate software engineering program should be able to
use the CBOK and the architectural framework to design
appropriate courses and degree requirements. The outcomes
and entrance assumptions should help in determining the ex-
pected market and value of the program to potential students
and their employers.

In addition, GSwE2009 includes the following:
>> The fundamental philosophy for GSwE2009
 development as described in a set of guiding principles
>> A discussion of how GSwE2009 will evolve to
 remain effective
>> A mapping of expected outcomes to the CBOK and to
 the total GSwE2009 program recommendations
>> A description of Knowledge Areas discussed in
 GSwE2009 that are not yet fully integrated into the
 current version of the SWEBOK
>> Glossary, references, and other supporting material

Expected Student Outcomes
Graduates of a master’s program that satisfies GSwE2009

will do the following:
>> Master the CBOK
>> Master software engineering in at least one application
 domain, such as finance, medical, transportation, or
 telecommunications; and one application type, such as
 real-time, embedded, safety-critical, or highly distributed
 systems. That mastery includes understanding how
 differences in domain and type manifest themselves in
 both the software and the engineering of the software,
 and includes understanding how to learn a new
 application domain or type

38 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

>> Master at least one Knowledge Area or sub-area
 from the CBOK to at least the Bloom Synthesis level
 [5]
>> Be able to make ethical professional decisions and
 practice ethical professional behavior
>> Understand the relationship between software
 engineering and systems engineering and be able to
 apply systems engineering principles and practices in
 the engineering of software
>> Be an effective member of a team, including teams
 that are international and geographically distributed;
 effectively communicate both orally and in writing;
 and lead in one area of project development, such as
 project management, requirements analysis,
 architecture, construction, or quality assurance
>> Be able to reconcile conflicting project objectives, finding
 acceptable compromises within limitations of cost, time,
 knowledge, existing systems, and organizations
 >> Understand and appreciate feasibility analysis,
 negotiation, and good communications with
 stakeholders in a typical software development
 environment, and be able to perform those tasks well;
 have effective work habits; and be a leader
>> Be able to learn new models, techniques, and
 technologies as they emerge, and appreciate the
 necessity of such continuing professional development
>> Be able to analyze a current significant software
 technology, articulate its strengths and weaknesses,
 compare it to alternative technologies, and specify and
 promote improvements or extensions to that technology

Core Body of Knowledge
The CBOK includes all of the fundamental or core skills,

knowledge, and experience to be taught in the curriculum to
achieve the expected student outcomes. The primary source
for developing the CBOK was the SWEBOK. Knowledge
elements were also derived from the Software Engineering
2004 curriculum guidelines [4], the INCOSE Guide to Sys-
tems Engineering Body of Knowledge [6] and especially the
INCOSE Systems Engineering Handbook [7].

Figure 1 shows the knowledge elements of CBOK and
their expected relative proportions of the GSwE2009 cur-
riculum. Although specific systems engineering knowledge
elements only represent 2—3% of the CBOK, they are
considered a cross-cutting concern that arises in many other
areas. For example, systems engineering material would also
be covered under requirements engineering, testing, configu-
ration management and project management.

Companion Reports
In addition to GSwE2009, ISSEC has published two com-

panion reports on its website: Comparisons of GSwE2009 to
Current Master’s Programs in Software Engineering and Fre-
quently Asked Questions on Implementing GSwE2009. The
latter report is intended to help schools establish or modify a
graduate software engineering program to align with the new
curriculum recommendations.

The comparison report provides information on about a
dozen current programs. Since most programs have alterna-
tive tracks, two or three hypothetical students from each
of these schools are described. Using the courses in their
individual programs, an assessment is made of each student’s
ability to achieve the new recommended outcomes. While all
programs compare fairly well, all had areas where they could
improve. For example, most programs do not cover ethics or
systems engineering topics as thoroughly as recommended
by GSwE2009.

Figure 1. CBOK knowledge elements as percentages
of GSwE2009 curriculum

Figure 2. Average Outcome Fulfillment

CrossTalk—Nov/Dec 2010 39

ARCHITECTURE TODAy

Comparison of GSwE2009 Guidance and
Actual Programs

GSwE2009 comparisons were performed in collabora-
tion with representatives of 12 currently offered software
engineering programs, nine from North America. The focus
was on comparison of the 10 GSwE2009 outcomes with the
expected outcomes currently attained by up to three diverse,
hypothetical, but typical, students from each program. Many
interesting facts were learned about the differences among
current software engineering programs, but space does not
permit further elaboration here.

By the GSwE2009 guidelines, the programs examined
clearly do a reasonable job of satisfying the outcomes to a
“medium” level, at least for the “typical” students described. As
shown in Figure 2, each program had some room for improve-
ment to fully meet all GSwE2009 outcomes for most students.
The outcomes least likely to be attained at a higher level are
ethics (few programs offer much coverage of this), systems
engineering (many programs cover this topic only lightly) and
application domain depth (some of the programs do not afford
their students an opportunity to attain such depth).

Similar entrance requirements (required degrees, levels of
experience, etc.) do not always correspond to similar levels of
outcome attainment, even when the students appear to have
similar backgrounds. Individual programs vary greatly from
one another in the overall outcome attainment levels of their
students, but most programs do make a difference—that is,
outcome attainment upon graduation is typically much higher
than upon entry. Industry experience typically results in higher
outcome attainment. Hypothetical students within most of the
programs vary in their levels of outcome attainment, suggest-
ing that their choices of electives and tracks make a signifi-
cant difference.

The most commonly required courses are software project
management, software architecture and design, software
requirements, and testing or verification and validation. By
contrast, relatively few programs require courses in construc-
tion, metrics, ethics, or systems engineering.

Data from three non-U.S. programs suggest that there are
significant differences of perspective, and that the GSwE2009
model is more U.S.-centric than originally intended.

The BKCASE Project
BKCASE, which began in September 2009, will gener-

ate two related products by 2012—SEBoK and GRCSE.
BKCASE is organized along similar lines to ISSEC. A diverse
author team, currently composed of 45 people from 10
countries, meets face to face every three months and works
in smaller groups via collaboration technology between work-
shops. The first author workshop was held at the Naval Post-
graduate School in December 2009, refining and ratifying the
project charter, project scope, and resulting in the formation
of early teams to begin writing the SEBoK. Teams began
working on GRCSE at the second workshop, held at the end
of March 2010 at Embry-Riddle Aeronautical University.

As with ISSEC, BKCASE products will initially be owned
and managed by the author team and copyrighted by Stevens.
Ultimately, SEBoK and GRCSE will have the greatest impact
if major professional societies become their “stewards,”
responsible for their evolution and maintenance. INCOSE
and the IEEE Systems Council or Computer Society are the
most natural stewards. These societies have several authors
participating in BKCASE. See <http://www.bkcase.org> for
more complete and current information.

Systems Engineering Body of Knowledge
Readers will benefit from a body of knowledge in systems

engineering as described in the value proposition for SEBoK:
>> There is no authoritative source that defines and
 organizes the knowledge of the systems engineering
 (SE) discipline, including its methods, processes,
 practices, and tools. The resulting knowledge gap
 creates unnecessary inconsistency and confusion in
 understanding the role of SE in projects and programs;
 and in defining SE products and processes. SEBoK will
 fill that gap, becoming the “go to” SE reference.
>> The process of creating the SEBoK will help to build
 community consensus on the boundaries and context of
 SE thinking. It will also help the community understand
 and improve the ability of management, science and
 engineering disciplines to work together.
>> Having a common way to refer to SE knowledge will
 facilitate communication among systems engineers and
 provide a baseline for competency models, certification
 programs, educational programs, and other workforce
 development initiatives around the world. Having
 common ways to identify metadata about SE knowledge
 will facilitate search and other automated actions on
 SE knowledge.

At the first author workshop, the authors confirmed this
value proposition and that there are two disciplines related
to SE that require special attention in the SEBoK—software
engineering and project management. Software engineering
was singled out because the functionality and character of vir-
tually every interesting system these days relies on software.
Software drives much of the architecture, security, safety,
scalability, interface, and countless other characteristics of
modern systems. Much, if not the majority of the risk and cost
of systems development rests with the software elements.
Given the enormous impact of software on systems, the
SEBoK will contain, in integral fashion, software engineering
knowledge. At the first workshop, however, no decisions were
made on how to accomplish the integration of software engi-
neering knowledge or project management into the SEBoK.

For Version 0.25, the SEBoK will be domain independent.
There will be no effort to define knowledge areas in terms
or methods that are specific to a particular domain such as
finance, medical devices or defense systems. Domain-specific
knowledge will be discussed in companion case studies,

40 CrossTalk—Nov/Dec 2010

ARCHITECTURE TODAy

the application of SE in an application domain or
business segment. The use of GRCSE for guidance
will enable consistency in student proficiency at
graduation, making it easier for students to select
where to attend and for employers to evaluate pro-
spective new graduates. Naturally, based on the ear-
lier comments about the ties between software and
systems engineering, GRCSE will weave education
on software engineering into its recommendations
for graduate students studying systems engineering.

Summary
The development of a high-performance systems

and software engineering workforce in a world of
increasing complexity requires a foundation of au-
thoritative knowledge and guidance in systems and
software. Nowhere is this more vital than with the
U.S. military, which develops many of the largest and
most complex systems in the world. Two projects,
the ISSEC and the BKCASE have stepped up to
the challenge of building this foundation. ISSEC
published GSwE2009: Curriculum Guidelines for
Graduate Degree Programs in Software Engineer-
ing to provide authoritative guidelines—based on
the current and impacting the future revision of the
software engineering body of knowledge—on the
development of graduate software engineering cur-
riculum. BKCASE will produce both a SEBoK and
a GRCSE by 2012. Together, these projects and
products support the development of a strong global
software engineering workforce and a systems
engineering workforce with the necessary software
engineering skills to solve tomorrow’s global systems
problems.

In addition, readers are encouraged to consider
some of the following ways to use the guidelines pro-
duced by these projects:
>> To use as a reference for locating technical
 information about systems engineering
>> To inform their workforce of development efforts
>> To assess the educational background of their
 technical staff
>> To develop continuing education curricula or
 courses for their technical staff
>> To advise local universities or training vendors
 regarding the kinds of courses and/or educa-
 tional programs needed by their technical staff
 and future hires, and to use as a framework for
 selecting educational programs for employees
>> To define qualifications for contracted workforce

Any reader who is interested in contributing to ei-
ther project or adopting any of the resulting products
should send an e-mail with background information
and areas of interest to bkcase@stevens.edu.

which will address a few domains and walk through how
their methods, processes, and terminology align with SEBoK.
This decision will be revisited after the release and review
of Version 0.25.

Graduate Reference Curriculum for
Systems Engineering

Readers will benefit from a graduate reference curriculum
in systems engineering as described in the value proposition
for GRCSE:
>> There is no authoritative source to guide universities
 in establishing the outcomes graduating students
 should achieve with a master’s degree in SE, nor a
 guidance source on reasonable entrance expectations,
 curriculum architecture, or curriculum content
>> This gap in guidance creates unnecessary inconsistency
 in student proficiency at graduation; makes it harder for
 students to select where to attend; and makes it harder
 for employers to evaluate prospective new graduates
>> GRCSE will fill that gap, becoming the “go to” reference
 to develop, modify, and evaluate graduate programs
 in SE.

GRCSE will be based on the SEBoK and will be analogous
to GSwE2009 in form. It will define the entrance expec-
tations, curriculum architecture, curriculum content, and
expected student outcomes for graduate programs in SE.
GRCSE will recommend that students know or learn about

http://www.acq.osd.mil/se/apr/top5awards.html

CrossTalk—Nov/Dec 2010 41

ARCHITECTURE TODAy

Mark Ardis is a Distinguished Service Professor at Stevens
Institute of Technology. He has helped create academic
programs in software engineering at Wang Institute of
Graduate Studies, Carnegie Mellon University, Rose-Hulman
Institute of Technology, Rochester Institute of Technology and
Stevens Institute of Technology.

Dennis Frailey is a Principal Fellow at Raytheon and an
Adjunct Professor of Computer Science and Engineering at
Southern Methodist University. Dennis was lead author of
the GSwE2009 Comparisons volume. Dennis is a Fellow and
former Vice President of ACM, IEEE Senior Member, and
is active in several professional committees, including the
IEEE Computer Society Educational Activities Board and the
curriculum author team for GSwE2009. He holds an MS and
PhD in computer science (Purdue) and a BS in mathematics
(Notre Dame).

David. H. Olwell is Professor of Systems Engineering at
the Naval Postgraduate School, where he recently completed
a five-year term as department chair. His research interests
are reliability engineering and statistical quality control. He
previously was on the faculty of the United States Military
Academy.

Art Pyster is a Distinguished Research Professor at Stevens
Institute of Technology and Deputy Executive Director of the
Systems Engineering Research Center. Previously he served
in a number of senior technical and executive roles including
Deputy Chief Information Officer for the U.S. Federal Aviation
Administration and Senior Vice President and Director of
Systems Engineering and Integration at SAIC.

Alice Squires is a PhD candidate and faculty member in
Systems Engineering at Stevens Institute of Technology.
She has over 28 years of experience and has served as
a technical lead for IBM, a Senior Systems Engineering
manager for both Lockheed Martin and General Dynamics,
and a Senior Systems Engineer consultant to Lockheed
Martin, IBM, and EDO Ceramics.

1. Pyster, A. (Ed.), Graduate Software Engineering 2009 (GSwE2009): Curriculum
 Guidelines for Graduate Degree Programs in Software Engineering, Integrated
 Software & Systems Engineering Curriculum Project, Stevens Institute of
 Technology, September 30, 2009. <http://www.gswe2009.org>.
2. Ardis, M., and G. Ford. 1989. SEI report on graduate software engineering
 education. CMU/SEI 89-TR-21. Pittsburgh, PA: Software Engineering Institute,
 Carnegie Mellon University.
3. Bourque, P., and R. Dupuis, eds. 2004. SWEBOK: Guide to the Software
 Engineering Body of Knowledge. Los Alamitos, CA: IEEE Computer Society
 Press.
4. ACM and IEEE (ACM/IEEE Computer Society Joint Task Force on Computing
 Curricula). 2004. Software engineering 2004: Curriculum guidelines for
 undergraduate degree programs in software engineering.
 <http://www.acm.org/education/curricula-recommendations>.
5. Bloom, B. S., ed. 1956. Taxonomy of educational objectives: The classification
 of educational goals; Handbook I, cognitive domain. Place: Longmans.
6. INCOSE. 2004. Guide to Systems Engineering Body of Knowledge.
7. Haskins, C., ed. 2007. Systems engineering handbook: A guide for system life
 cycle processes and activities. Version 3.1. Rev. by K. Forsberg and M. Krueger.
 Seattle: INCOSE.

ABOUT THE AUTHORS REFERENCES

42 CrossTalk—Nov/Dec 2010

BACKTALK

Requirements
“If you don’t know where you’re going, you’re

unlikely to end up there.” - Forrest Gump
“All projects are iterative–it’s just that some

managers choose to have the iterations after
final delivery.” - Urban Wisdom

“It is easier to change the specification to fit
the program than vice versa.” - Author Unknown

“When somebody begins a sentence with ‘It
would be nice if...’ the right thing to do is to wait
politely for the speaker to finish. No project ever
gets around to the it-would-be-nice features: or
it they do, they regret it. Wait for sentences that
begin ‘We have to...’ and pay close attention, and
see if you agree.” - Tom Van Vleck

Cost Estimation
“It always takes longer than you expect, even

when you take Hofstadter’s Law into account.”
- Hofstadter’s Law, Douglas Hofstadter

Design
“Programs must be written for people to read,

and only incidentally for machines to execute.”
- Abelson and Sussman

“The hardest part of design … is keeping
features out.” - Donald Norman

“A designer can mull over complicated
designs for months. Then suddenly the simple,
elegant, beautiful solution occurs to him. When it
happens to you, it feels as if God is talking! And
maybe He is.” - Leo Frankowski (in The Cross-
Time Engineer)

“The purpose of analysis is not modeling but
understanding.” - Sun Tsu, The Art of War

Programming and Programming
Languages

“C++ would make a decent teaching lan-
guage if we could teach the ++ part without the
C part.” - Michael B. Feldman

“It has been discovered that C++ provides
a remarkable facility for concealing the trivial
details of a program–such as where its bugs
are.” - David Keppel

“And then it occurred to me that a computer is
a stupid machine with the ability to do incred-
ibly smart things, while computer programmers
are smart people with the ability to do incredibly
stupid things. They are, in short, a perfect match.”
- Bill Bryson

“Good code is its own best documentation.
As you’re about to add a comment, ask yourself,
‘How can I improve the code so that this com-
ment isn’t needed?’” - Steve McConnell

“The only way for errors to occur in a program
is by being put there by the author. No other
mechanisms are known. Programs can’t acquire
bugs by sitting around with other buggy pro-
grams.” - Harlan Mills

“There are two ways to write error-free pro-
grams; only the third one works.” - Alan J. Perlis

“There does not now, nor will there ever exist,
a programming language in which it is the least
bit hard to write bad programs.” - Lawrence Flon

“That’s the thing about people who think they
hate computers. What they really hate are lousy
programmers.” - Larry Niven

“The evolution of languages: FORTRAN is a
non-typed language. C is a weakly typed lan-
guage. Ada is a strongly typed language. C++ is
a strongly hyped language.” - Ron Sercely

“You can tell how far we have to go, when
FORTRAN is the language of supercomputers.”
- Steven Feiner

Reuse
“I’ve finally learned what ‘upward compat-

ible’ means. It means we get to keep all our old
mistakes.” - Dennie van Tassel

Testing
“Debugging is twice as hard as writing the

code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by defini-
tion, not smart enough to debug it.” - Brian W.
Kernighan.

“Software undergoes beta testing shortly
before it’s released. Beta is Latin for ‘still doesn’t
work.’” - Author Unknown

“If debugging is the process of removing
bugs, then programming must be the process of
putting them in.” - Author Unknown

“It’s not a bug, it’s an undocumented feature.”
- Author Unknown

Maintenance
“Always code as if the guy who ends up main-

taining your code will be a violent psychopath
who knows where you live.” - Martin Golding

“Programming today is a race between
software engineers striving to build bigger and
better idiot-proof programs, and the universe
trying to produce bigger and better idiots. So far,
the universe is winning.” - Author Unknown

Software Engineering in General
 “If builders built buildings the way program-

mers wrote programs, then the first woodpecker
that came along would destroy civilization.”
- Gerald Weinberg

“It has been said that the great scientific
disciplines are examples of giants standing on
the shoulders of other giants. It has also been
said that the software industry is an example of
midgets standing on the toes of other midgets.”
- Alan Cooper

If you have other “Great Quotes,” please send
them to me and I’ll publish “Quotes Volume II” in
a later column!

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

Standing On the
Shoulders of Giants!
Since 1997, I have been writing BackTalk columns on a semi-regular basis. I tend to work best
under pressure (translation–I have raised procrastination to an art form) so I typically start writ-
ing the column about a day before it is due. There is nothing like sheer stress and a looming
deadline to sharpen up my writing skill. But I start thinking about the column weeks in advance–
writing in my head, discarding ideas. This column, I was stumped. I could not come up with just
the right idea. As I was teaching Software Engineering today, I was going over some pithy and
somewhat painfully funny quotes covering programming and software engineering. I realized that
the column was writing itself–and others were writing it for me! After a little research looking for
quotes that sum up our profession, here is my contribution.

Topics Include…
* Concepts and Trends
 Example Areas:

 Cloud Computing

 Model Driven Processes

 Multi Processor Challenges

 SOA

* Cyber Technologies
 Example Areas:

 Cyber Security

 Cyber Defense

 Cyber Physical Systems

* Guidance, Policies, and
 Standards
* Human Capital /
 Workforce Development
* Modernization of Systems
* Real World Lessons
* Research
* Social Networking
* Technological Tool Advances
 Example Areas:

 Acquisition Processes

 Agile Development

 Assessments

 Data Development & Environments

 Program Management & Methods

 Rugged and Resilient Systems

 Smart Grids

 Systems & Systems Assurance

 Software

 Testing Methods

 Verification / Validation

 Web Authentication

For conference & trade show information, visit
WWW.SSTC-ONLINE.ORG

WITH
SYNCing-UPSYNCing-UP

23rd Annual

Ok, we’ve all seen it, individuals totally immersed in hand-held devices consuming an endless stream of
information and knowledge - thumbs furiously dancing across miniscule keyboards entering thoughts,

ideas, and directions.

Much like the tiny information exchange tools meant to keep us up-to-speed in this data-filled world, SSTC
2011 will focus on connecting attendees with technological advancements associated with building better

systems and software in support of our defense forces.

Join us 16 – 19 May 2011
in Salt Lake City, Utah, as we Sync-Up with advances in Technology!

Plan now to join us for excellent, quality presentations and
networking with colleagues from military/government,
industry and academia.

Conference Registration Opens 24 January 2011

Mark your calendar!

http://www.sstc-online.org

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35
 �Ground Theater Air Control
System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League Baseball
Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Visit us at www.309SMXG.hill.af.mil. Send resumes to shanae.headley@hill.af.mil.
Also apply for our openings at USAjobs.gov

CrossTalk / 517 SMXS MXDEA
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks the
above organizations for
providing their support.

http://www.309SMXG.hill.af.mil
mailto:shanae.headley@hill.af.mil
https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.navair.navy.mil
http://www.acq.osd.mil/se
http://www.mas.hill.af.mil

